Artigo Acesso aberto Revisado por pares

Gβγ mediates activation of Rho guanine nucleotide exchange factor ARHGEF17 that promotes metastatic lung cancer progression

2021; Elsevier BV; Volume: 298; Issue: 1 Linguagem: Inglês

10.1016/j.jbc.2021.101440

ISSN

1083-351X

Autores

Irving García‐Jiménez, Rodolfo Daniel Cervantes‐Villagrana, Jorge Eduardo del-Río-Robles, Alejandro Castillo-Kauil, Yarely Mabell Beltrán‐Navarro, Jonathan García-Román, Guadalupe Reyes‐Cruz, José Vázquez‐Prado,

Tópico(s)

Erythrocyte Function and Pathophysiology

Resumo

Metastatic lung cancer is a major cause of death worldwide. Dissemination of cancer cells can be facilitated by various agonists within the tumor microenvironment, including by lysophosphatidic acid (LPA). We postulate that Rho guanine nucleotide exchange factors (RhoGEFs), which integrate signaling cues driving cell migration, are critical effectors in metastatic cancer. Specifically, we addressed the hypothetical role of ARHGEF17, a RhoGEF, as a potential effector of Gβγ in metastatic lung cancer cells responding to LPA. Here, we show that ARHGEF17, originally identified as a tumor endothelial marker, is involved in tumor growth and metastatic dissemination of lung cancer cells in an immunocompetent murine model. Gene expression–based analysis of lung cancer datasets showed that increased levels of ARHGEF17 correlated with reduced survival of patients with advanced-stage tumors. Cellular assays also revealed that this RhoGEF participates in the invasive and migratory responses elicited by Gi protein–coupled LPA receptors via the Gβγ subunit complex. We demonstrate that this signaling heterodimer promoted ARHGEF17 recruitment to the cell periphery and actin fibers. Moreover, Gβγ allosterically activates ARHGEF17 by the removal of inhibitory intramolecular restrictions. Taken together, our results indicate that ARHGEF17 may be a valid potential target in the treatment of metastatic lung cancer. Metastatic lung cancer is a major cause of death worldwide. Dissemination of cancer cells can be facilitated by various agonists within the tumor microenvironment, including by lysophosphatidic acid (LPA). We postulate that Rho guanine nucleotide exchange factors (RhoGEFs), which integrate signaling cues driving cell migration, are critical effectors in metastatic cancer. Specifically, we addressed the hypothetical role of ARHGEF17, a RhoGEF, as a potential effector of Gβγ in metastatic lung cancer cells responding to LPA. Here, we show that ARHGEF17, originally identified as a tumor endothelial marker, is involved in tumor growth and metastatic dissemination of lung cancer cells in an immunocompetent murine model. Gene expression–based analysis of lung cancer datasets showed that increased levels of ARHGEF17 correlated with reduced survival of patients with advanced-stage tumors. Cellular assays also revealed that this RhoGEF participates in the invasive and migratory responses elicited by Gi protein–coupled LPA receptors via the Gβγ subunit complex. We demonstrate that this signaling heterodimer promoted ARHGEF17 recruitment to the cell periphery and actin fibers. Moreover, Gβγ allosterically activates ARHGEF17 by the removal of inhibitory intramolecular restrictions. Taken together, our results indicate that ARHGEF17 may be a valid potential target in the treatment of metastatic lung cancer. Lipid-derived agonists and chemokines within the tumor microenvironment attract stromal cells and promote dissemination of cancer cells (1Pyne N.J. Pyne S. Sphingosine 1-phosphate and cancer.Nat. Rev. Cancer. 2010; 10: 489-503Crossref PubMed Scopus (667) Google Scholar, 2Mills G.B. Moolenaar W.H. The emerging role of lysophosphatidic acid in cancer.Nat. Rev. Cancer. 2003; 3: 582-591Crossref PubMed Scopus (933) Google Scholar, 3Nagarsheth N. Wicha M.S. Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy.Nat. Rev. Immunol. 2017; 17: 559-572Crossref PubMed Scopus (1016) Google Scholar). They stabilize the active conformation of chemotactic G protein–coupled receptors (GPCRs) to engage an intracellular repertoire of G protein–dependent and independent mechanisms (4Arang N. Gutkind J.S. G Protein-coupled receptors and heterotrimeric G proteins as cancer drivers.FEBS Lett. 2020; 594: 4201-4232Crossref PubMed Scopus (38) Google Scholar, 5Wu V. Yeerna H. Nohata N. Chiou J. Harismendy O. Raimondi F. Inoue A. Russell R.B. Tamayo P. Gutkind J.S. Illuminating the onco-GPCRome: Novel G protein-coupled receptor-driven oncocrine networks and targets for cancer immunotherapy.J. Biol. Chem. 2019; 294: 11062-11086Abstract Full Text Full Text PDF PubMed Scopus (88) Google Scholar). During cell invasion and migration, GPCRs drive actin cytoskeleton reorganization through Rho GTPases, such as RhoA, Rac1, and Cdc42. These GTPases are activated by multidomain signaling proteins called Rho guanine nucleotide exchange factors (RhoGEFs) (6Vazquez-Prado J. Bracho-Valdes I. Cervantes-Villagrana R.D. Reyes-Cruz G. Gbetagamma pathways in cell polarity and migration linked to oncogenic GPCR signaling: Potential relevance in tumor microenvironment.Mol. Pharmacol. 2016; 90: 573-586Crossref PubMed Scopus (26) Google Scholar, 7Purvanov V. Holst M. Khan J. Baarlink C. Grosse R. G-protein-coupled receptor signaling and polarized actin dynamics drive cell-in-cell invasion.Elife. 2014; 3e02786Crossref PubMed Scopus (41) Google Scholar, 8Olguin-Olguin A. Aalto A. Maugis B. Boquet-Pujadas A. Hoffmann D. Ermlich L. Betz T. Gov N.S. Reichman-Fried M. Raz E. Chemokine-biased robust self-organizing polarization of migrating cells in vivo.Proc. Natl. Acad. Sci. U. S. A. 2021; 118e2018480118Crossref PubMed Scopus (10) Google Scholar). Specifically, these multidomain effectors are key signaling proteins, and potential therapeutic targets, that set with precision where and which Rho GTPases are loaded with GTP, acquiring an active conformation that control the assembly of different kinds of actin filaments and actomyosin contractile complexes (9Cook D.R. Rossman K.L. Der C.J. Rho guanine nucleotide exchange factors: Regulators of Rho GTPase activity in development and disease.Oncogene. 2014; 33: 4021-4035Crossref PubMed Scopus (261) Google Scholar, 10Lawson C.D. Ridley A.J. Rho GTPase signaling complexes in cell migration and invasion.J. Cell Biol. 2018; 217: 447-457Crossref PubMed Scopus (244) Google Scholar, 11Lorenzo-Martin L.F. Rodriguez-Fdez S. Fabbiano S. Abad A. Garcia-Macias M.C. Dosil M. Cuadrado M. Robles-Valero J. Bustelo X.R. Vav2 pharmaco-mimetic mice reveal the therapeutic value and caveats of the catalytic inactivation of a Rho exchange factor.Oncogene. 2020; 39: 5098-5111Crossref PubMed Scopus (8) Google Scholar, 12Cooke M. Baker M.J. Kazanietz M.G. Rac-GEF/rac signaling and metastatic dissemination in lung cancer.Front. Cell Dev. Biol. 2020; 8: 118Crossref PubMed Scopus (11) Google Scholar). Although reorganization of the actin cytoskeleton by RhoGTPases is a ubiquitous mechanism for cell migration, the signaling proteins upstream of these processes are quite diverse. The involved repertoire of signaling molecules includes distinct families of heterotrimeric G proteins, particularly Gα12/13, Gαq/11, and Gβγ subunits, some of which have been linked to cancer metastasis and drug resistance (13Kelly P. Moeller B.J. Juneja J. Booden M.A. Der C.J. Daaka Y. Dewhirst M.W. Fields T.A. Casey P.J. The G12 family of heterotrimeric G proteins promotes breast cancer invasion and metastasis.Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 8173-8178Crossref PubMed Scopus (132) Google Scholar, 14Rasheed S.A.K. Leong H.S. Lakshmanan M. Raju A. Dadlani D. Chong F.T. Shannon N.B. Rajarethinam R. Skanthakumar T. Tan E.Y. Hwang J.S.G. Lim K.H. Tan D.S. Ceppi P. Wang M. et al.GNA13 expression promotes drug resistance and tumor-initiating phenotypes in squamous cell cancers.Oncogene. 2018; 37: 1340-1353Crossref PubMed Scopus (28) Google Scholar, 15Annala S. Feng X. Shridhar N. Eryilmaz F. Patt J. Yang J. Pfeil E.M. Cervantes-Villagrana R.D. Inoue A. Haberlein F. Slodczyk T. Reher R. Kehraus S. Monteleone S. Schrage R. et al.Direct targeting of Galphaq and Galpha11 oncoproteins in cancer cells.Sci. Signal. 2019; 12eaau5948Crossref PubMed Scopus (62) Google Scholar, 16Tang X. Sun Z. Runne C. Madsen J. Domann F. Henry M. Lin F. Chen S. A critical role of Gbetagamma in tumorigenesis and metastasis of breast cancer.J. Biol. Chem. 2011; 286: 13244-13254Abstract Full Text Full Text PDF PubMed Scopus (34) Google Scholar, 17Yagi H. Tan W. Dillenburg-Pilla P. Armando S. Amornphimoltham P. Simaan M. Weigert R. Molinolo A.A. Bouvier M. Gutkind J.S. A synthetic biology approach reveals a CXCR4-G13-Rho signaling axis driving transendothelial migration of metastatic breast cancer cells.Sci. Signal. 2011; 4: ra60Crossref PubMed Scopus (109) Google Scholar, 18Khalil B.D. Hsueh C. Cao Y. Abi Saab W.F. Wang Y. Condeelis J.S. Bresnick A.R. Backer J.M. GPCR signaling mediates tumor metastasis via PI3Kbeta.Cancer Res. 2016; 76: 2944-2953Crossref PubMed Scopus (36) Google Scholar, 19Cervantes-Villagrana R.D. Adame-Garcia S.R. Garcia-Jimenez I. Color-Aparicio V.M. Beltran-Navarro Y.M. Konig G.M. Kostenis E. Reyes-Cruz G. Gutkind J.S. Vazquez-Prado J. Gbetagamma signaling to the chemotactic effector P-REX1 and mammalian cell migration is directly regulated by Galphaq and Galpha13 proteins.J. Biol. Chem. 2019; 294: 531-546Abstract Full Text Full Text PDF PubMed Scopus (22) Google Scholar); as well as multiple RhoGEFs, that according to their position within signaling cascades, are key to drive cell migration under aberrant conditions such as metastatic cancer (9Cook D.R. Rossman K.L. Der C.J. Rho guanine nucleotide exchange factors: Regulators of Rho GTPase activity in development and disease.Oncogene. 2014; 33: 4021-4035Crossref PubMed Scopus (261) Google Scholar, 20Barrio-Real L. Kazanietz M.G. Rho GEFs and cancer: Linking gene expression and metastatic dissemination.Sci. Signal. 2012; 5: pe43Crossref PubMed Scopus (47) Google Scholar). Examples of RhoGEFs mechanistically linked to dissemination of various cancer cell types include DOCK1, DOCK3, P-Rex1, PDZ-RhoGEF, ARHGEF5, ARHGEF7, GEF-H1, NET1, Vav2/3, Tiam1, and Trio (21Lindsay C.R. Lawn S. Campbell A.D. Faller W.J. Rambow F. Mort R.L. Timpson P. Li A. Cammareri P. Ridgway R.A. Morton J.P. Doyle B. Hegarty S. Rafferty M. Murphy I.G. et al.P-Rex1 is required for efficient melanoblast migration and melanoma metastasis.Nat. Commun. 2011; 2: 555Crossref PubMed Scopus (127) Google Scholar, 22Ito H. Tsunoda T. Riku M. Inaguma S. Inoko A. Murakami H. Ikeda H. Matsuda M. Kasai K. Indispensable role of STIL in the regulation of cancer cell motility through the lamellipodial accumulation of ARHGEF7-PAK1 complex.Oncogene. 2020; 39: 1931-1943Crossref PubMed Scopus (8) Google Scholar, 23Qin J. Xie Y. Wang B. Hoshino M. Wolff D.W. Zhao J. Scofield M.A. Dowd F.J. Lin M.F. Tu Y. Upregulation of PIP3-dependent Rac exchanger 1 (P-Rex1) promotes prostate cancer metastasis.Oncogene. 2009; 28: 1853-1863Crossref PubMed Scopus (110) Google Scholar, 24Clements M.E. Johnson R.W. PREX1 drives spontaneous bone dissemination of ER+ breast cancer cells.Oncogene. 2020; 39: 1318-1334Crossref PubMed Scopus (11) Google Scholar, 25Semprucci E. Tocci P. Cianfrocca R. Sestito R. Caprara V. Veglione M. Castro V.D. Spadaro F. Ferrandina G. Bagnato A. Rosano L. Endothelin A receptor drives invadopodia function and cell motility through the beta-arrestin/PDZ-RhoGEF pathway in ovarian carcinoma.Oncogene. 2016; 35: 3432-3442Crossref PubMed Scopus (42) Google Scholar, 26Liao Y.C. Ruan J.W. Lua I. Li M.H. Chen W.L. Wang J.R. Kao R.H. Chen J.H. Overexpressed hPTTG1 promotes breast cancer cell invasion and metastasis by regulating GEF-H1/RhoA signalling.Oncogene. 2012; 31: 3086-3097Crossref PubMed Scopus (53) Google Scholar, 27Zhu G. Fan Z. Ding M. Zhang H. Mu L. Ding Y. Zhang Y. Jia B. Chen L. Chang Z. Wu W. An EGFR/PI3K/AKT axis promotes accumulation of the Rac1-GEF Tiam1 that is critical in EGFR-driven tumorigenesis.Oncogene. 2015; 34: 5971-5982Crossref PubMed Scopus (66) Google Scholar, 28Citterio C. Menacho-Marquez M. Garcia-Escudero R. Larive R.M. Barreiro O. Sanchez-Madrid F. Paramio J.M. Bustelo X.R. The rho exchange factors vav2 and vav3 control a lung metastasis-specific transcriptional program in breast cancer cells.Sci. Signal. 2012; 5: ra71Crossref PubMed Scopus (89) Google Scholar, 29Sonoshita M. Itatani Y. Kakizaki F. Sakimura K. Terashima T. Katsuyama Y. Sakai Y. Taketo M.M. Promotion of colorectal cancer invasion and metastasis through activation of NOTCH-DAB1-ABL-RHOGEF protein TRIO.Cancer Discov. 2015; 5: 198-211Crossref PubMed Scopus (70) Google Scholar, 30Laurin M. Huber J. Pelletier A. Houalla T. Park M. Fukui Y. Haibe-Kains B. Muller W.J. Cote J.F. Rac-specific guanine nucleotide exchange factor DOCK1 is a critical regulator of HER2-mediated breast cancer metastasis.Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 7434-7439Crossref PubMed Scopus (74) Google Scholar, 31Sanz-Moreno V. Gadea G. Ahn J. Paterson H. Marra P. Pinner S. Sahai E. Marshall C.J. Rac activation and inactivation control plasticity of tumor cell movement.Cell. 2008; 135: 510-523Abstract Full Text Full Text PDF PubMed Scopus (720) Google Scholar, 32Habets G.G. Scholtes E.H. Zuydgeest D. van der Kammen R.A. Stam J.C. Berns A. Collard J.G. Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins.Cell. 1994; 77: 537-549Abstract Full Text PDF PubMed Scopus (473) Google Scholar, 33Komiya Y. Onodera Y. Kuroiwa M. Nomimura S. Kubo Y. Nam J.M. Kajiwara K. Nada S. Oneyama C. Sabe H. Okada M. The Rho guanine nucleotide exchange factor ARHGEF5 promotes tumor malignancy via epithelial-mesenchymal transition.Oncogenesis. 2016; 5e258Crossref PubMed Scopus (14) Google Scholar, 34Murray D. Horgan G. Macmathuna P. Doran P. NET1-mediated RhoA activation facilitates lysophosphatidic acid-induced cell migration and invasion in gastric cancer.Br. J. Cancer. 2008; 99: 1322-1329Crossref PubMed Scopus (72) Google Scholar). Therefore, RhoGEFs are intermediaries of migratory pathways activated by cancer and stromal cells in response to chemokines and lipid-derived agonists, such as lysophosphatidic acid (LPA) (35Struckhoff A.P. Rana M.K. Kher S.S. Burow M.E. Hagan J.L. Del Valle L. Worthylake R.A. PDZ-RhoGEF is essential for CXCR4-driven breast tumor cell motility through spatial regulation of RhoA.J. Cell Sci. 2013; 126: 4514-4526Crossref PubMed Scopus (26) Google Scholar, 36Bartolome R.A. Molina-Ortiz I. Samaniego R. Sanchez-Mateos P. Bustelo X.R. Teixido J. Activation of Vav/Rho GTPase signaling by CXCL12 controls membrane-type matrix metalloproteinase-dependent melanoma cell invasion.Cancer Res. 2006; 66: 248-258Crossref PubMed Scopus (106) Google Scholar, 37Meiri D. Marshall C.B. Mokady D. LaRose J. Mullin M. Gingras A.C. Ikura M. Rottapel R. Mechanistic insight into GPCR-mediated activation of the microtubule-associated RhoA exchange factor GEF-H1.Nat. Commun. 2014; 5: 4857Crossref PubMed Scopus (43) Google Scholar, 38Wang Q. Liu M. Kozasa T. Rothstein J.D. Sternweis P.C. Neubig R.R. Thrombin and lysophosphatidic acid receptors utilize distinct rhoGEFs in prostate cancer cells.J. Biol. Chem. 2004; 279: 28831-28834Abstract Full Text Full Text PDF PubMed Scopus (60) Google Scholar, 39Van Leeuwen F.N. Olivo C. Grivell S. Giepmans B.N. Collard J.G. Moolenaar W.H. Rac activation by lysophosphatidic acid LPA1 receptors through the guanine nucleotide exchange factor Tiam1.J. Biol. Chem. 2003; 278: 400-406Abstract Full Text Full Text PDF PubMed Scopus (154) Google Scholar, 40Stam J.C. Michiels F. van der Kammen R.A. Moolenaar W.H. Collard J.G. Invasion of T-lymphoma cells: Cooperation between rho family GTPases and lysophospholipid receptor signaling.EMBO J. 1998; 17: 4066-4074Crossref PubMed Scopus (203) Google Scholar). Within the tumor microenvironment, LPA is produced and subjected to changes on its spatiotemporal availability, creating self-generated gradients that sustain directional migration of various cancer cell types (41Magkrioti C. Oikonomou N. Kaffe E. Mouratis M.A. Xylourgidis N. Barbayianni I. Megadoukas P. Harokopos V. Valavanis C. Chun J. Kosma A. Stathopoulos G.T. Bouros E. Bouros D. Syrigos K. et al.The autotaxin-lysophosphatidic acid axis promotes lung carcinogenesis.Cancer Res. 2018; 78: 3634-3644Crossref PubMed Scopus (35) Google Scholar, 42Juin A. Spence H.J. Martin K.J. McGhee E. Neilson M. Cutiongco M.F.A. Gadegaard N. Mackay G. Fort L. Lilla S. Kalna G. Thomason P. Koh Y.W.H. Norman J.C. Insall R.H. et al.N-WASP control of LPAR1 trafficking establishes response to self-generated LPA gradients to promote pancreatic cancer cell metastasis.Dev. Cell. 2019; 51: 431-445.e7Abstract Full Text Full Text PDF PubMed Scopus (21) Google Scholar, 43Susanto O. Koh Y.W.H. Morrice N. Tumanov S. Thomason P.A. Nielson M. Tweedy L. Muinonen-Martin A.J. Kamphorst J.J. Mackay G.M. Insall R.H. LPP3 mediates self-generation of chemotactic LPA gradients by melanoma cells.J. Cell Sci. 2017; 130: 3455-3466Crossref PubMed Scopus (30) Google Scholar). Even though LPA is the cognate agonist of six different GPCRs; in oncogenic settings, LPA receptor 1 (LPAR1) has been highlighted as the main promoters of metastatic dissemination of lung, ovarian, pancreatic, melanoma, and breast cancer cells, among others (41Magkrioti C. Oikonomou N. Kaffe E. Mouratis M.A. Xylourgidis N. Barbayianni I. Megadoukas P. Harokopos V. Valavanis C. Chun J. Kosma A. Stathopoulos G.T. Bouros E. Bouros D. Syrigos K. et al.The autotaxin-lysophosphatidic acid axis promotes lung carcinogenesis.Cancer Res. 2018; 78: 3634-3644Crossref PubMed Scopus (35) Google Scholar, 42Juin A. Spence H.J. Martin K.J. McGhee E. Neilson M. Cutiongco M.F.A. Gadegaard N. Mackay G. Fort L. Lilla S. Kalna G. Thomason P. Koh Y.W.H. Norman J.C. Insall R.H. et al.N-WASP control of LPAR1 trafficking establishes response to self-generated LPA gradients to promote pancreatic cancer cell metastasis.Dev. Cell. 2019; 51: 431-445.e7Abstract Full Text Full Text PDF PubMed Scopus (21) Google Scholar, 44Boucharaba A. Serre C.M. Guglielmi J. Bordet J.C. Clezardin P. Peyruchaud O. The type 1 lysophosphatidic acid receptor is a target for therapy in bone metastases.Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 9643-9648Crossref PubMed Scopus (175) Google Scholar, 45Sengupta S. Kim K.S. Berk M.P. Oates R. Escobar P. Belinson J. Li W. Lindner D.J. Williams B. Xu Y. Lysophosphatidic acid downregulates tissue inhibitor of metalloproteinases, which are negatively involved in lysophosphatidic acid-induced cell invasion.Oncogene. 2007; 26: 2894-2901Crossref PubMed Scopus (60) Google Scholar, 46Liu S. Umezu-Goto M. Murph M. Lu Y. Liu W. Zhang F. Yu S. Stephens L.C. Cui X. Murrow G. Coombes K. Muller W. Hung M.C. Perou C.M. Lee A.V. et al.Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases.Cancer Cell. 2009; 15: 539-550Abstract Full Text Full Text PDF PubMed Scopus (310) Google Scholar, 47Muinonen-Martin A.J. Susanto O. Zhang Q. Smethurst E. Faller W.J. Veltman D.M. Kalna G. Lindsay C. Bennett D.C. Sansom O.J. Herd R. Jones R. Machesky L.M. Wakelam M.J. Knecht D.A. et al.Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal.PLoS Biol. 2014; 12e1001966Crossref PubMed Scopus (84) Google Scholar). Cell invasion driven by LPA occurs via Gi-dependent dynamic cytoskeleton remodeling that guides the assembly of actin fibers into invadopodia, delimiting areas of extracellular matrix degradation (48Kedziora K.M. Leyton-Puig D. Argenzio E. Boumeester A.J. van Butselaar B. Yin T. Wu Y.I. van Leeuwen F.N. Innocenti M. Jalink K. Moolenaar W.H. Rapid remodeling of invadosomes by Gi-coupled receptors: Dissecting the role of rho GTPases.J. Biol. Chem. 2016; 291: 4323-4333Abstract Full Text Full Text PDF PubMed Scopus (32) Google Scholar, 49Ward J.D. Ha J.H. Jayaraman M. Dhanasekaran D.N. LPA-mediated migration of ovarian cancer cells involves translocalization of Galphai2 to invadopodia and association with Src and beta-pix.Cancer Lett. 2015; 356: 382-391Crossref PubMed Scopus (32) Google Scholar). We previously demonstrated that metastatic LAP0297 lung cancer cells coinoculated with bone marrow–derived cells exhibited an increased tumorigenic potential in immunocompetent mice (50Cervantes-Villagrana R.D. Color-Aparicio V.M. Reyes-Cruz G. Vazquez-Prado J. Protumoral bone marrow-derived cells migrate via Gbetagamma-dependent signaling pathways and exhibit a complex repertoire of RhoGEFs.J. Cell Commun. Signal. 2019; 13: 179-191Crossref PubMed Scopus (5) Google Scholar). In response to LPA, these cells migrate via Gi-coupled receptors, pointing to G protein–regulated RhoGEFs as putative Gβγ effectors that integrate migratory cues (50Cervantes-Villagrana R.D. Color-Aparicio V.M. Reyes-Cruz G. Vazquez-Prado J. Protumoral bone marrow-derived cells migrate via Gbetagamma-dependent signaling pathways and exhibit a complex repertoire of RhoGEFs.J. Cell Commun. Signal. 2019; 13: 179-191Crossref PubMed Scopus (5) Google Scholar). In this regard, ARHGEF17 (also known as TEM4/p164-RhoGEF), a RhoGEF potentially linked to tumor-induced angiogenesis (51St Croix B. Rago C. Velculescu V. Traverso G. Romans K.E. Montgomery E. Lal A. Riggins G.J. Lengauer C. Vogelstein B. Kinzler K.W. Genes expressed in human tumor endothelium.Science. 2000; 289: 1197-1202Crossref PubMed Scopus (1638) Google Scholar, 52Rumenapp U. Freichel-Blomquist A. Wittinghofer B. Jakobs K.H. Wieland T. A mammalian Rho-specific guanine-nucleotide exchange factor (p164-RhoGEF) without a pleckstrin homology domain.Biochem. J. 2002; 366: 721-728Crossref PubMed Google Scholar), has been found overexpressed in murine Lewis lung carcinoma tumors (53Mehran R. Nilsson M. Khajavi M. Du Z. Cascone T. Wu H.K. Cortes A. Xu L. Zurita A. Schier R. Riedel B. El-Zein R. Heymach J.V. Tumor endothelial markers define novel subsets of cancer-specific circulating endothelial cells associated with antitumor efficacy.Cancer Res. 2014; 74: 2731-2741Crossref PubMed Scopus (33) Google Scholar). This RhoGEF maintains intercellular adhesions in endothelial cell monolayers; whereas in migrating cells, it sustains persistent direction (54Ngok S.P. Geyer R. Kourtidis A. Mitin N. Feathers R. Der C. Anastasiadis P.Z. TEM4 is a junctional Rho GEF required for cell-cell adhesion, monolayer integrity and barrier function.J. Cell Sci. 2013; 126: 3271-3277Crossref PubMed Scopus (29) Google Scholar, 55Mitin N. Rossman K.L. Currin R. Anne S. Marshall T.W. Bear J.E. Bautch V.L. Der C.J. The RhoGEF TEM4 regulates endothelial cell migration by Suppressing actomyosin Contractility.PLoS One. 2013; 8e66260Crossref PubMed Scopus (14) Google Scholar, 56Weber P. Baltus D. Jatho A. Drews O. Zelarayan L.C. Wieland T. Lutz S. RhoGEF17-An essential regulator of endothelial cell death and growth.Cells. 2021; 10: 741Crossref PubMed Scopus (2) Google Scholar). Interestingly, the expression of ARHGEF17 is regulated by the Hippo pathway, and it is part of a transcriptional signature that, together with 21 other genes, shows prognostic value among various cancer types (57Lin C. Yao E. Zhang K. Jiang X. Croll S. Thompson-Peer K. Chuang P.T. YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis.Elife. 2017; 6e21130Crossref Scopus (75) Google Scholar, 58Wang Y. Xu X. Maglic D. Dill M.T. Mojumdar K. Ng P.K. Jeong K.J. Tsang Y.H. Moreno D. Bhavana V.H. Peng X. Ge Z. Chen H. Li J. Chen Z. et al.Comprehensive molecular characterization of the Hippo signaling pathway in cancer.Cell Rep. 2018; 25: 1304-1317.e5Abstract Full Text Full Text PDF PubMed Scopus (182) Google Scholar). ARHGEF17 contains an actin-binding site through which it might regulate its activity during cell migration (59Mitin N. Rossman K.L. Der C.J. Identification of a novel actin-binding domain within the Rho guanine nucleotide exchange factor TEM4.PLoS One. 2012; 7e41876Crossref PubMed Scopus (21) Google Scholar). Besides its RhoGEF activity, ARHGEF17 acts as a spindle assembly checkpoint timer, regulating mitotic fidelity via positioning of the kinetochore-associated kinase Mps1 (60Isokane M. Walter T. Mahen R. Nijmeijer B. Heriche J.K. Miura K. Maffini S. Ivanov M.P. Kitajima T.S. Peters J.M. Ellenberg J. ARHGEF17 is an essential spindle assembly checkpoint factor that targets Mps1 to kinetochores.J. Cell Biol. 2016; 212: 647-659Crossref PubMed Scopus (16) Google Scholar). Since cell migration and proper control of the cell cycle are altered in cancer cells, the finding that ARHGEF17 is mechanistically linked to these essential processes is consistent with a putative dysregulation of this RhoGEF in carcinogenesis and metastasis. Although ARHGEF17 was originally identified as a tumor endothelial transcript (51St Croix B. Rago C. Velculescu V. Traverso G. Romans K.E. Montgomery E. Lal A. Riggins G.J. Lengauer C. Vogelstein B. Kinzler K.W. Genes expressed in human tumor endothelium.Science. 2000; 289: 1197-1202Crossref PubMed Scopus (1638) Google Scholar), its potential role in cancer progression remains unknown. Since increased expression of ARHGEF17 correlated with bad prognosis in lung cancer patients with high-grade tumors, here we analyzed its role in tumor growth and metastasis. We used immunocompetent mice as a preclinical model to address the involvement of ARHGEF17 in tumorigenesis by syngeneic LAP0297 lung cancer cells and established the mechanism by which Gi-coupled LPARs activate this RhoGEF. To get an initial insight into the potential role of ARHGEF17 in lung cancer we looked for clinical differences in patients having this gene amplified compared with all others. Analysis of the non–small cell lung carcinoma (NSCLC) TCGA datasets (61Campbell J.D. Alexandrov A. Kim J. Wala J. Berger A.H. Pedamallu C.S. Shukla S.A. Guo G. Brooks A.N. Murray B.A. Imielinski M. Hu X. Ling S. Akbani R. Rosenberg M. et al.Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas.Nat. Genet. 2016; 48: 607-616Crossref PubMed Scopus (682) Google Scholar) revealed that ARHGEF17 amplification correlated with a higher percentage of patients with tumors at stages II–IV and N1–2, indicative of advanced tumor growth and lymph node infiltration, respectively (https://www.cbioportal.org/; Fig. 1, A and B; ARHGEF17 is named GEF17 in all the figures). Consistent with these observations, maximally separated Kaplan–Meier survival plots of patients with high-grade tumors (stage II–IV) had a significant statistical correlation between high ARHGEF17 expression and reduced survival (Fig. 1C). In contrast, patients with tumors classified as stage I did not show statistical correlation between high ARHGEF17 expression and overall survival (not shown). These analyses were consistent with a hypothetical role of ARHGEF17 in lung cancer progression. To directly address the potential role of ARHGEF17 in metastatic lung cancer, we knocked down this RhoGEF in LAP0297 lung cancer cells using a lentiviral shRNA-ARHGEF17 (Fig. 1D) to address their tumorigenic and organotropic metastatic potential in immunocompetent FVB mice. LAP0297 shGEF17 cells, with reduced expression of ARHGEF17, developed smaller tumors compared with sh-Control cells (Fig. 1E), which, at the end of the experiment, weighted significantly less (Fig. 1, F and G). The metastatic potential of LAP0297-shGEF17 knockdown lung cancer cells, compared with sh-Control cells, was evaluated in FVB mice that were intravenously injected in the tail with 500,000 cells. Metastatic tumors grown in the lungs were evaluated after 2 weeks. The macroscopic appearance of normal lungs and those excised from mice injected with sh-Control and shGEF17 cells is shown in Figure 1H. Lungs with multiple metastatic tumors weighted more than normal lungs from healthy mice (Fig. 1H). Interestingly, both the weight (Fig. 1H) and the number of lung macrometastasis (Fig. 1I) were significantly attenuated in mice inoculated with cells in which ARHGEF17 was knocked down in comparison to those inoculated with sh-Control cells. The putative antiproliferative effect of ARHGEF17 knockdown and the potential effect on cell viability were assayed in sh-Control and shGEF17-cultured LAP0297 cells. For these experiments, cells were incubated overnight with 1% fetal bovine serum (FBS) and then incubated with 10% FBS or serum-free media for 48 h and analyzed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. ARHGEF17 knockdown shGEF17 cells were able to proliferate in response to 10% FBS (Fig. 1J), and their viability was not significantly reduced in the prolonged absence of serum (Fig. 1K). However, when compared with sh-Control cells, the proliferative effect was slightly reduced (Fig. 1J) as well as the viability in the continued absence of serum (Fig. 1K). Together, these results suggest that ARHGEF17 plays a critical role in lung cancer growth and metastatic dissemination. We previously demonstrated that LPA stimulates metastatic LAP0297 cells to migrate via a signaling pathway sensitive to pertussis toxin (PTX) and gallein, indicating the critical participation of heterotrimeric Gi proteins controlling a still to be revealed migratory mechanism based on Gβγ-effector pathways (50Cervantes-Villagrana R.D. Color-Aparicio V.M. Reyes-Cruz G. Vazquez-Prado J. Protumoral bone marrow-derived cells migrate via Gbetagamma-dependent signaling pathways and exhibit a complex repertoire of RhoGEFs.J. Cell Commun. Signal. 2019; 13: 179-191Crossref PubMed Scopus (5) Google Scholar). Consistent with the importance of LPA signaling in lung cancer (41Magkrioti C. Oikonomou N. Kaffe E. Mouratis M.A. Xylourgidis N. Barbayianni I. Megadoukas P. Harokopos V. Valavanis C. Chun J. Kosma A. Stathopoulos G.T. Bouros E. Bouros D. Syrigos K. et al.The autotaxin-lysophosphatidic acid axis promotes lung carcinogenesis.Cancer Res. 2018; 78: 3634-3644Crossref PubMed Scopus (35) Google Scholar), analysis of transcriptomic information from the NSCLC TCGA datasets revealed a positive correlation between ARHGEF17 and autotaxin (ectonucleotide pyrophosphatase/phosphodiesterase 2 [ENPP2]) expre

Referência(s)