Predicting master transcription factors from pan-cancer expression data
2021; American Association for the Advancement of Science; Volume: 7; Issue: 48 Linguagem: Inglês
10.1126/sciadv.abf6123
ISSN2375-2548
AutoresJessica Reddy, Marcos A. Fonseca, Rosario I. Corona, Robbin Nameki, Felipe Segato Dezem, Isaac A. Klein, Heidi Chang, Daniele Chaves‐Moreira, Lena K. Afeyan, Tathiane M. Malta, Xianzhi Lin, Forough Abbasi, Alba Font‐Tello, Thaís S. Sabedot, Paloma Cejas, Norma I. Rodríguez-Malavé, Ji-Heui Seo, De‐Chen Lin, Ursula A. Matulonis, Beth Y. Karlan, Simon A. Gayther, Bogdan Paşaniuc, Alexander Gusev, Houtan Noushmehr, Henry W. Long, Matthew L. Freedman, Ronny Drapkin, Richard A. Young, Brian J. Abraham, Kate Lawrenson,
Tópico(s)Epigenetics and DNA Methylation
ResumoThe CaCTS algorithm nominates cancer cell master transcription factors and guides a model of ovarian cancer regulatory circuitry.
Referência(s)