Almgren's Big Regularity Paper

2000; World Scientific; Linguagem: Inglês

10.1142/4253

ISSN

2010-2070

Autores

Vladimir Scheffer, Jean E. Taylor,

Tópico(s)

Mathematical Dynamics and Fractals

Resumo

Fred Almgren exploited the excess method for proving regularity theorems in the calculus of variations. His techniques yielded Holder continuous differentiability except for a small closed singular set. In the sixties and seventies Almgren refined and generalized his methods. Between 1974 and 1984 he wrote a 1,700-page proof that was his most ambitious development of his ground-breaking ideas. Originally, this monograph was available only as a three-volume work of limited circulation. The entire text is faithfully reproduced here.This book gives a complete proof of the interior regularity of an area-minimizing rectifiable current up to Hausdorff codimension 2. The argument uses the theory of Q-valued functions, which is developed in detail. For example, this work shows how first variation estimates from squash and squeeze deformations yield a monotonicity theorem for the normalized frequency of oscillation of a Q-valued function that minimizes a generalized Dirichlet integral. The principal features of the book include an extension theorem analogous to Kirszbraun's theorem and theorems on the approximation in mass of nearly flat mass-minimizing rectifiable currents by graphs and images of Lipschitz Q-valued functions.

Referência(s)