Light Reaction Path of Photosynthesis
1984; De Gruyter; Linguagem: Inglês
10.1515/9783112538609-020
Autores Tópico(s)Algal biology and biofuel production
Resumo1: Free Energy Change for Quantum Storage in Photosynthesis.- 1 Introduction.- 2 Definition of the Primary Photochemical Reaction.- 3 Photopotential, Photooverpotential and Free Energy Change for Quantum Storage in Photosynthesis.- 4 Outline of this Book.- References.- 2: Phycobiliproteins: Molecular Aspects of a Photosynthetic Antenna System.- 1 Introduction.- 2 Morphology.- 3 Energy Transfer.- 4 Chromophore Structure.- 4.1 Chromophores Cleaved from Biliproteins.- 4.2 Chromophores Bound to the Protein.- 5 Noncovalent Protein Chromophore Interactions.- 5.1 Topology of the Chromophore.- 5.2 Conformational Mobility.- 6 The Proteins.- 7 Biosynthesis.- 8 Concluding Remarks.- Notes Added in Proof.- References.- 3: Structure and Excitation Dynamics of Light-harvesting Protein Complexes.- 1 Introduction.- 1.1 General Discussion of Excitation Migration.- 1.2 Coherence.- 2 Experimental Methods.- 2.1 Streak Camera and Neodymium Laser.- 2.2 Single Photon Counting.- 3 Excited State Annihilation.- 4 Anaerobic Photosynthetic Bacteria.- 4.1 The B800-850 Light-harvesting Pigment-Protein Complex Isolated Isolated from Rps. sphaeroides.- 4.2 Kinetic Studies.- 4.3 The Water-soluble Bchl-a Antenna Complex from P. aestuarii, Strain 2K.- 5 Lower Algae.- 5.1 The Perdinin-Chl a Protein from Glenodinium.- 5.2 The Phycobiliproteins of the Red Algae.- 5.3 Kinetic Studies.- 6 Antenna Pigment-Protein Complexes from Higher Plants.- References.- 4: Photooxidation of the Reaction Center Chlorophylls and Structural Properties of Photosynthetic Reaction Centers.- Abbreviations and Symbols.- 1 Introduction.- 1.1 Energetics of Photosynthesis.- 1.2 Chlorophylls, Quinones and Related Molecules.- 2 The Photosystem of Purple Bacteria.- 2.1 Optical Investigations.- 2.1.1 Absorption Difference Spectroscopy.- 2.1.2 Spectroscopic Nomenclature of Bchl.- 2.1.3 Circular Dichroism.- 2.1.4 Linear Dichroism.- 2.1.5 Nano- and Picosecond Spectroscopy.- 2.2 ESR and ENDOR.- 2.2.1 Characteristics of the ESR Signal of P860+.- 2.2.2 ENDOR of the Primary Donor.- 2.2.3 ESR and ENDOR of the Reduced Intermediary Acceptor, I?.- 2.3 The Triplet State of the Primary Donor.- 3 The Plant Photosystems.- 3.1 Optical Investigations of the Primary Donor of Photosystems 1 and 2.- 3.1.1 Absorption Difference Spectroscopy of P700.- 3.1.2 Absorption Difference Spectroscopy of P680.- 3.1.3 Circular and Linear Dichroism of Photosystems 1 and 2.- 3.2 ESR and ENDOR.- 3.2.1 P700+.- 3.2.2 P680+.- 3.3 The Intermediary Acceptors of Photosystems 1 and 2.- 3.3.1 Photosystem 1.- 3.3.2 Photosystem 2.- 3.3.3 Triplet States.- 4 Structure of the Bacterial Primary Donor-Acceptor Complex.- 4.1 Electron Transfer Rates.- 4.2 Configuration of Primary Reactants.- References.- Notes Added in Proof (In Connection with Chapter 8).- 5: Triplet State and Chlorophylls.- Abbreviations.- 1 Introduction.- 2 Optical-Magnetic Resonance Spectroscopy.- 2.1 Triplet Detection. Zero Field Experiments.- 2.2 The Triplet State and the EPR Experiment.- 2.3 The Triplet Yield vs Magnetic Field.- 2.4 Triplet Photochemistry. The CIDEP Method.- 2.4.1 What is CIDEP?.- 2.4.2 Triplet Precursor vs Triplet Mechanism.- 2.4.3 The Triplet Mechanism.- 2.4.4 The Radical Pair Mechanism: ST+-1: Free Energy Change for Quantum Storage in Photosynthesis.- 1 Introduction.- 2 Definition of the Primary Photochemical Reaction.- 3 Photopotential, Photooverpotential and Free Energy Change for Quantum Storage in Photosynthesis.- 4 Outline of this Book.- References.- 2: Phycobiliproteins: Molecular Aspects of a Photosynthetic Antenna System.- 1 Introduction.- 2 Morphology.- 3 Energy Transfer.- 4 Chromophore Structure.- 4.1 Chromophores Cleaved from Biliproteins.- 4.2 Chromophores Bound to the Protein.- 5 Noncovalent Protein Chromophore Interactions.- 5.1 Topology of the Chromophore.- 5.2 Conformational Mobility.- 6 The Proteins.- 7 Biosynthesis.- 8 Concluding Remarks.- Notes Added in Proof.- References.- 3: Structure and Excitation Dynamics of Light-harvesting Protein Complexes.- 1 Introduction.- 1.1 General Discussion of Excitation Migration.- 1.2 Coherence.- 2 Experimental Methods.- 2.1 Streak Camera and Neodymium Laser.- 2.2 Single Photon Counting.- 3 Excited State Annihilation.- 4 Anaerobic Photosynthetic Bacteria.- 4.1 The B800-850 Light-harvesting Pigment-Protein Complex Isolated Isolated from Rps. sphaeroides.- 4.2 Kinetic Studies.- 4.3 The Water-soluble Bchl-a Antenna Complex from P. aestuarii, Strain 2K.- 5 Lower Algae.- 5.1 The Perdinin-Chl a Protein from Glenodinium.- 5.2 The Phycobiliproteins of the Red Algae.- 5.3 Kinetic Studies.- 6 Antenna Pigment-Protein Complexes from Higher Plants.- References.- 4: Photooxidation of the Reaction Center Chlorophylls and Structural Properties of Photosynthetic Reaction Centers.- Abbreviations and Symbols.- 1 Introduction.- 1.1 Energetics of Photosynthesis.- 1.2 Chlorophylls, Quinones and Related Molecules.- 2 The Photosystem of Purple Bacteria.- 2.1 Optical Investigations.- 2.1.1 Absorption Difference Spectroscopy.- 2.1.2 Spectroscopic Nomenclature of Bchl.- 2.1.3 Circular Dichroism.- 2.1.4 Linear Dichroism.- 2.1.5 Nano- and Picosecond Spectroscopy.- 2.2 ESR and ENDOR.- 2.2.1 Characteristics of the ESR Signal of P860+.- 2.2.2 ENDOR of the Primary Donor.- 2.2.3 ESR and ENDOR of the Reduced Intermediary Acceptor, I?.- 2.3 The Triplet State of the Primary Donor.- 3 The Plant Photosystems.- 3.1 Optical Investigations of the Primary Donor of Photosystems 1 and 2.- 3.1.1 Absorption Difference Spectroscopy of P700.- 3.1.2 Absorption Difference Spectroscopy of P680.- 3.1.3 Circular and Linear Dichroism of Photosystems 1 and 2.- 3.2 ESR and ENDOR.- 3.2.1 P700+.- 3.2.2 P680+.- 3.3 The Intermediary Acceptors of Photosystems 1 and 2.- 3.3.1 Photosystem 1.- 3.3.2 Photosystem 2.- 3.3.3 Triplet States.- 4 Structure of the Bacterial Primary Donor-Acceptor Complex.- 4.1 Electron Transfer Rates.- 4.2 Configuration of Primary Reactants.- References.- Notes Added in Proof (In Connection with Chapter 8).- 5: Triplet State and Chlorophylls.- Abbreviations.- 1 Introduction.- 2 Optical-Magnetic Resonance Spectroscopy.- 2.1 Triplet Detection. Zero Field Experiments.- 2.2 The Triplet State and the EPR Experiment.- 2.3 The Triplet Yield vs Magnetic Field.- 2.4 Triplet Photochemistry. The CIDEP Method.- 2.4.1 What is CIDEP?.- 2.4.2 Triplet Precursor vs Triplet Mechanism.- 2.4.3 The Triplet Mechanism.- 2.4.4 The Radical Pair Mechanism: ST+-1 Mixing.- 2.4.5 The Radical Pair Mechanism: ST0 Mixing.- 3 Triplet State Studies of Model Chlorophyll Compounds.- 4 In-Vivo Chlorophyll Triplets.- 4.1 Introduction.- 4.2 Bacterial Photosynthesis.- 4.2.1 The Triplet State in Bacterial Photosynthesis.- 4.2.2 Zero Field Splitting Parameters.- 4.2.3 Electron Spin Polarization in Triplets.- 4.3 Green Plant Photosynthesis.- 4.3.1 Photoexcited Triplet State Detection in Green Plants.- 4.3.2 CIDEP Studies of Photosynthesis.- 5 Summary.- References and Notes.- 6: The Chlorophyll Triplet State and the Structure of Chlorophyll Aggregates.- 1 Introduction.- 2 Optically Detected Magnetic Resonance in the Triplet State.- 3 Application of ODMR to the Chlorophyll Triplet State.- 3.1 Chlorophyll Triplet State Zero-Field Splittings.- 3.2 Chlorophyll T1 ? S0 Intersystem Crossing Rates.- 4 Application of Triplet State ODMR to Chlorophyll Aggregate Structure.- 4.1 The Triplet Exciton Model.- 4.2 Application to the Chlorophyll Dimer In Vitro.- 4.3 Chlorophyll Aggregate Structure In Vivo.- References.- 7: Synthetic Approaches to Photoreaction Center Structure and Function.- 1 Introduction.- 2 Porphyrin Models of Photoreaction Center Chlorophylls.- 3 Noncovalent Chlorophyll Special Pair Models.- 4 Preparation of Singly Linked Covalent Chlorophyll Dimers.- 5 Solvent-dependent Structure of Singly Linked Covalent Chlorophyll Dimers.- 6 Photophysical Properties of Singly Linked Covalent Chlorophyll Dimers.- 7 Photochemical Properties of Singly Linked Covalent Chlorophyll Dimers.- 8 Biomimetic Charge Separation Photochemistry.- 9 Doubly Linked Chlorophyll Cyclophane Models of Special Pair Structure.- 10 Concluding Remarks.- References.- 8: Light Path of Carbon Reduction in Photosynthesis.- 1 Introduction.- 2 Scope.- 2.1 Origin of O2 Evolution.- 2.2 Light and Dark Paths of Carbon.- 2.3 Submolecular Interactions of Chl-a Light Reactions.- 3 Model for Chlorophyll Light Reactions in Photosynthesis.- 3.1 Long-Wavelength Shifts of Chlorophyll Aggregates.- 3.2 Postulates.- 3.3 Path of Electrons from Water.- 4 Dimer Model of P700.- 4.1 Chlorophyll Purification.- 4.2 Mg... O(H)H Interactions.- 4.3 Model P700 Structure and Properties.- 5 P680 Model and Water Splitting.- 6 Carbon Reduction by Water.- 7 Two-Photon Activation of Water Splitting.- 8 Primary and Secondary Processes of Photosynthesis.- 8.1 Comparison of Models for P680 and P700.- 8.2 Light Reaction Sequence.- 8.3 Photochemical Reduction of CO2.- 8.4 Time Sequence and Branching of Electron Flow from Water..- 9 Further Conclusions.- 9.1 Spatial Relationships of P680 and P700.- 9.2 Quantum Requirement of Oxygen Evolution.- 9.3 PGA Reduction as Mechanism for Photoregulation.- References.- Notes Added in Proof for Chapter 4.- Author Index.
Referência(s)