Artigo Acesso aberto Revisado por pares

Scale-up in PEM electro-ozonizers for the degradation of organics

2021; Elsevier BV; Volume: 284; Linguagem: Inglês

10.1016/j.seppur.2021.120261

ISSN

1873-3794

Autores

M. Rodríguez-Peña, J.A. Barrios, Justo Lobato, Cristina Sáez, Carlos Barrera-Díaz, Manuel A. Rodrigo,

Tópico(s)

Electrocatalysts for Energy Conversion

Resumo

This work focuses on the scale-up of electro-ozonizers by evaluating the production of ozone and the degradation of clopyralid synthetic wastes using three commercial PEM electrolyzers. The mechanical concept of the three cells is similar: a single compartment cell equipped with a MEA (consisting of a polymer exchange membrane and two pressed diamond coatings electrodes), powered with monopolar electric connection and where water flows on the surface of the electrodes, although the main electrolyte is the Nafion proton exchange membrane. However, their size and recommended operating conditions are not as similar, and their comparison becomes a good scaleup case study. The CabECO® cell consists of 2 MEAs with a total surface area of 24 cm2, a maximum operating current density of 2. 0A. The Mikrozom® cell consists of only one MEA with a net surface electrodic area of 112 mm2 and a maximum operation current density of 1.0 A. Finally, the CONDIAPURE® cell consists of a single MEA with a total surface area of 146 cm2 and a maximum operation current density of 10.0 A. The performance under mild and extreme operating conditions was compared and the results show that, although the cell concept is similar, the results obtained differ very significantly. The three PEM electrolyzers tested can produce ozone efficiently and mineralize completely clopyralid. The only intermediates measured come from the cathodic hydrodechlorination of clopyralid and oxidative intermediates were only detected at trace concentrations. CabECO® cell demonstrates an outstanding performance with very high current efficiencies in the production of ozone. However, the highest mineralization efficiencies are obtained with the Microzon®, which, although it is the PEM electrolyzer with the smallest active area, is the most efficient because can reach high ozone concentrations and achieve the best clopyralid mineralization. Efficiencies as high as 0.47 mg O3 Wh−1 can be obtained with this cell. Slightly lower values are reached by the CabECO® cell (0.38 mg O3 Wh−1). Enlarging electrode surface area does not seem to be a good strategy from the viewpoint of efficiency and it seems to promote side reactions that compete with ozone production and with the degradation of organics. This means that stacking rather than electrode enlarging should be the strategy more advisable for scaling up the electro-ozonation technology.

Referência(s)