Robust and scalable production of emulsion-templated microparticles in 3D-printed milli-fluidic device
2021; Elsevier BV; Volume: 431; Linguagem: Inglês
10.1016/j.cej.2021.133998
ISSN1873-3212
AutoresYoon‐Ho Hwang, Taewoong Um, Gwang‐Noh Ahn, Dong‐Pyo Kim, Hyomin Lee,
Tópico(s)Electrohydrodynamics and Fluid Dynamics
ResumoEmulsions are ideal templates for preparation of functional microparticles in food, cosmetics, and pharmaceutics. However, the lack of a simple and robust platform that allows mass production of oil-in-water (O/W) emulsions has been considered as a practical hurdle for broader applicability of these emulsion-based technologies. Herein, we report a novel 3D-printed milli-fluidic device (3D-PMD) for robust and scalable production of water-in-oil (W/O) as well as O/W emulsions. By using an additive manufacturing method with one-step prototyping capability, 3D-PMD integrates an array of 40 drop-makers with a 3D void geometry and a flow distributor in a compact fashion, which has been difficult to achieve using conventional methods. Experimental results as well as the computational fluid dynamics simulation confirm the validity in the design of the drop-maker and the flow distributor, as well as the hydrophilic surface modification process for the robust and controllable production of poly(ethylene glycol) microgels and polycaprolactone microparticles, prepared from W/O and O/W emulsions, respectively. We anticipate that the simplicity, low-cost ($150/per device), facile manufacturability, and versatile emulsion production capability of our 3D-PMD method offers a unique route to produce W/O and O/W emulsions in a robust and in a scalable manner, providing new and exciting opportunities in various applications involving functional microparticles such as cosmetic products, optical displays, controlled reactions, and drug delivery systems to name a few.
Referência(s)