Artigo Acesso aberto Produção Nacional Revisado por pares

Autonomous and Robust Orbit-Keeping for Small-Body Missions

2022; American Institute of Aeronautics and Astronautics; Volume: 45; Issue: 3 Linguagem: Inglês

10.2514/1.g005863

ISSN

1533-3884

Autores

Rodolfo Batista Negri, A. F. B. A. Prado,

Tópico(s)

Astro and Planetary Science

Resumo

No AccessEngineering NotesAutonomous and Robust Orbit-Keeping for Small-Body MissionsRodolfo Batista Negri and Antônio F. B. A. PradoRodolfo Batista Negri https://orcid.org/0000-0002-8196-8579National Institute for Space Research, 12227-010, São José dos Campos, Brazil and Antônio F. B. A. Prado https://orcid.org/0000-0002-7966-3231National Institute for Space Research, 12227-010, São José dos Campos, BrazilPublished Online:11 Jan 2022https://doi.org/10.2514/1.G005863SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Guelman M. and Harel D., "Power Limited Soft Landing on an Asteroid," Journal of Guidance, Control, and Dynamics, Vol. 17, No. 1, 1994, pp. 15–20. https://doi.org/10.2514/3.21153 LinkGoogle Scholar[2] Sawai S., Scheeres D. and Broschart S., "Control of Hovering Spacecraft Using Altimetry," Journal of Guidance, Control, and Dynamics, Vol. 25, No. 4, 2002, pp. 786–795. https://doi.org/10.2514/2.4947 LinkGoogle Scholar[3] Broschart S. B. and Scheeres D. J., "Control of Hovering Spacecraft Near Small Bodies: Application to Asteroid 25143 Itokawa," Journal of Guidance, Control, and Dynamics, Vol. 28, No. 2, 2005, pp. 343–354. https://doi.org/10.2514/1.3890 LinkGoogle Scholar[4] Broschart S. B. and Scheeres D. J., "Boundedness of Spacecraft Hovering Under Dead-Band Control in Time-Invariant Systems," Journal of Guidance, Control, and Dynamics, Vol. 30, No. 2, 2007, pp. 601–610. https://doi.org/10.2514/1.20179 LinkGoogle Scholar[5] Guelman M., "Closed-Loop Control of Close Orbits Around Asteroids," Journal of Guidance, Control, and Dynamics, Vol. 38, No. 5, 2015, pp. 854–860. https://doi.org/10.2514/1.G000158 LinkGoogle Scholar[6] Guelman M. M., "Closed-Loop Control for Global Coverage and Equatorial Hovering About an Asteroid," Acta Astronautica, Vol. 137, Aug. 2017, pp. 353–361. https://doi.org/10.1016/j.actaastro.2017.04.035 CrossrefGoogle Scholar[7] Gui H. and de Ruiter A. H., "Control of Asteroid-Hovering Spacecraft with Disturbance Rejection Using Position-Only Measurements," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 10, 2017, pp. 2401–2416. https://doi.org/10.2514/1.G002617 LinkGoogle Scholar[8] Yang H., Bai X. and Baoyin H., "Rapid Generation of Time-Optimal Trajectories for Asteroid Landing via Convex Optimization," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 3, 2017, pp. 628–641. LinkGoogle Scholar[9] Furfaro R., Cersosimo D. and Wibben D. R., "Asteroid Precision Landing via Multiple Sliding Surfaces Guidance Techniques," Journal of Guidance, Control, and Dynamics, Vol. 36, No. 4, 2013, pp. 1075–1092. https://doi.org/10.2514/1.58246 LinkGoogle Scholar[10] Furfaro R., "Hovering in Asteroid Dynamical Environments Using Higher-Order Sliding Control," Journal of Guidance, Control, and Dynamics, Vol. 38, No. 2, 2015, pp. 263–279. LinkGoogle Scholar[11] Yang H., Bai X. and Baoyin H., "Finite-Time Control for Asteroid Hovering and Landing via Terminal Sliding-Mode Guidance," Acta Astronautica, Vol. 132, March 2017, pp. 78–89. https://doi.org/10.1016/j.actaastro.2016.12.012 CrossrefGoogle Scholar[12] Williams B., Antreasian P., Carranza E., Jackman C., Leonard J., Nelson D., Page B., Stanbridge D., Wibben D., Williams K. and et al., "OSIRIS-REx Flight Dynamics and Navigation Design," Space Science Reviews, Vol. 214, No. 4, 2018, p. 69. https://doi.org/10.1007/s11214-018-0501-x CrossrefGoogle Scholar[13] Scheeres D., Sutter B. and Rosengren A., "Design, Dynamics and Stability of the OSIRIS-REx Sun-Terminator Orbits," Advances in the Astronautical Sciences, Vol. 148, Feb. 2013, pp. 3263–3282. Google Scholar[14] Takahashi S. and Scheeres D. J., "Autonomous Exploration of a Small Near-Earth Asteroid," Journal of Guidance, Control, and Dynamics, Vol. 44, No. 4, 2021, pp. 701–718. LinkGoogle Scholar[15] Ohira G., Kashioka S., Takao Y., Iyota T. and Tsuda Y., "Autonomous Image-Based Navigation Using Vector Code Correlation Algorithm for Distant Small Body Exploration," Acta Astronautica, 2020 (in press). https://doi.org/10.1016/j.actaastro.2020.10.013 Google Scholar[16] Aguiar A. P. and Hespanha J. P., "Trajectory-Tracking and Path-Following of Underactuated Autonomous Vehicles with Parametric Modeling Uncertainty," IEEE Transactions on Automatic Control, Vol. 52, No. 8, 2007, pp. 1362–1379. https://doi.org/10.1109/TAC.2007.902731 CrossrefGoogle Scholar[17] Aguiar A. P., Hespanha J. P. and Kokotović P. V., "Performance Limitations in Reference Tracking and Path Following for Nonlinear Systems," Automatica, Vol. 44, No. 3, 2008, pp. 598–610. https://doi.org/10.1016/j.automatica.2007.06.030 CrossrefGoogle Scholar[18] Oguri K. and McMahon J. W., "Robust Spacecraft Guidance Around Small Bodies Under Uncertainty: Stochastic Optimal Control Approach," Journal of Guidance, Control, and Dynamics, 2021, pp. 1–19. https://doi.org/10.2514/1.G005426 Google Scholar[19] Schaub H., Vadali S. R., Junkins J. L. and Alfriend K. T., "Spacecraft Formation Flying Control Using Mean Orbit Elements," Journal of the Astronautical Sciences, Vol. 48, No. 1, 2000, pp. 69–87. https://doi.org/10.1007/BF03546219 CrossrefGoogle Scholar[20] Garulli A., Giannitrapani A., Leomanni M. and Scortecci F., "Autonomous Low-Earth-Orbit Station-Keeping with Electric Propulsion," Journal of Guidance, Control, and Dynamics, Vol. 34, No. 6, 2011, pp. 1683–1693. https://doi.org/10.2514/1.52985 LinkGoogle Scholar[21] De Florio S., D'Amico S. and Radice G., "Virtual Formation Method for Precise Autonomous Absolute Orbit Control," Journal of Guidance, Control, and Dynamics, Vol. 37, No. 2, 2014, pp. 425–438. https://doi.org/10.2514/1.61575 LinkGoogle Scholar[22] Negri R. B. and Prado A. F. B. A., "A Novel Robust 3-D Path Following Control for Keplerian Orbits," arXiv preprint arXiv:2012.01954, 2020. Google Scholar[23] Scheeres D. J., Orbital Motion in Strongly Perturbed Environments: Applications to Asteroid, Comet and Planetary Satellite Orbiters, Springer, New York, 2016, Chap. 2. Google Scholar[24] Werner R. A. and Scheeres D. J., "Exterior Gravitation of a Polyhedron Derived and Compared with Harmonic and Mascon Gravitation Representations of Asteroid 4769 Castalia," Celestial Mechanics and Dynamical Astronomy, Vol. 65, No. 3, 1996, pp. 313–344. https://doi.org/10.1007/BF00053511 Google Scholar[25] Dobrovolskis A. R., "Inertia of Any Polyhedron," Icarus, Vol. 124, No. 2, 1996, pp. 698–704. CrossrefGoogle Scholar[26] Werner R. A., "Spherical Harmonic Coefficients for the Potential of a Constant-Density Polyhedron," Computers & Geosciences, Vol. 23, No. 10, 1997, pp. 1071–1077. CrossrefGoogle Scholar[27] Montebruck O. and Gill E., "Satellite Orbits," Models, Methods and Applications, Springer-Verlag, Berlin, 2000, Chap. 3. Google Scholar[28] Slotine J.-J. E. and Li W., Applied Nonlinear Control, Vol. 199, Prentice-Hall, Englewood Cliffs, NJ, 1991, Chap. 7. Google Scholar[29] Khalil H. K., Nonlinear Control, Pearson Higher Education, England, 2014, Chap. 10. Google Scholar[30] Utkin V., Guldner J. and Shi J., Sliding Mode Control in Electro-Mechanical Systems, CRC Press, Boca Raton, FL, 2017. Google Scholar[31] Battin R. H., An Introduction to the Mathematics and Methods of Astrodynamics, Revised ed., AIAA, Reston, VA, 1999. LinkGoogle Scholar[32] Tajmar M., Genovese A. and Steiger W., "Indium Field Emission Electric Propulsion Microthruster Experimental Characterization," Journal of Propulsion and Power, Vol. 20, No. 2, 2004, pp. 211–218. LinkGoogle Scholar[33] Machuca P. and Sánchez J. P., "Autonomous Navigation and Guidance for CubeSats to Flyby Near-Earth Asteroids," Proceedings of the 70th International Astronautical Congress (IAC), International Astronautical Federation - IAF, Paris, France, 2019, pp. 21–25. Google Scholar[34] Antreasian P. G., Moreau M. C., Adam C. D., French A., Geeraert J., Getzandanner K. M., Highsmith D. E., Leonard J. M., Lessac-Chenen E. J., Levine A. H. and et al., "Early Navigation Performance of the OSIRIS-REx Approach to Bennu," 2019, https://ntrs.nasa.gov/citations/20190002612. Google Scholar[35] Snyder J. S., Goebel D. M., Chaplin V., Lopez Ortega A., Mikellides I. G., Aghazadeh F., Johnson I., Kerl T. and Lenguito G., "Electric Propulsion for the Psyche Mission," AIAA Paper 2020-3607, 2019. https://doi.org/10.2514/6.2020-3607 Google Scholar[36] Racca G. D. and McNamara P. W., "The LISA Pathfinder Mission," Space Science Reviews, Vol. 151, Nos. 1–3, 2010, pp. 159–181. CrossrefGoogle Scholar[37] Team A., Riedel J., Bhaskaran S., Desai S., Han D., Kennedy B., Null G., Synnott S., Wang T., Werner R. and et al., "Autonomous Optical Navigation (AutoNav) DS1 Technology Validation Report," Jet Propulsion Lab., California Inst. of Technology, 2000, https://trs.jpl.nasa.gov/handle/2014/41687. Google Scholar[38] Riedel J., Eldred D., Kennedy B., Kubitscheck D., Vaughan A., Werner R., Bhaskaran S. and Synnott S., "AutoNav Mark3: Engineering the Next Generation of Autonomous Onboard Navigation and Guidance," AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA Paper 2006-6708, 2006. Google Scholar[39] Bhaskaran S., "Autonomous Navigation for Deep Space Missions," SpaceOps 2012, 2012, p. 1267135, https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.659.7816=rep1=pdf. Google Scholar[40] Wie B., Space Vehicle Dynamics and Control, AIAA, Reston, VA, 2008. LinkGoogle Scholar[41] Lian Y. and Tang G., "Libration Point Orbit Rendezvous Using PWPF Modulated Terminal Sliding Mode Control," Advances in Space Research, Vol. 52, No. 12, 2013, pp. 2156–2167. https://doi.org/10.1016/j.asr.2013.08.034 CrossrefGoogle Scholar Previous article FiguresReferencesRelatedDetails What's Popular Volume 45, Number 3March 2022 CrossmarkInformationCopyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerospace ElectronicsAerospace EngineeringAerospace SciencesAsteroidsAstrodynamicsAstronauticsAstronomyCelestial MechanicsOrbital ManeuversOrbital PropertyPlanetary Science and ExplorationSpace OrbitSpace Science and Technology KeywordsOrbital ElementsSliding Mode ControlAsteroidsHysteresisSpecific Angular MomentumSpherical HarmonicsOrbital PeriodKeplerian OrbitAstrodynamicsAdditive White Gaussian NoiseAcknowledgmentsThe authors wish to express their appreciation for the support provided by grants #406841/2016-0 and 301338/2016-7 from the National Council for Scientific and Technological Development (CNPq); grants # 2017/20794-2 and 2016/24561-0 from São Paulo Research Foundation (FAPESP), and the financial support from the Coordination for the Improvement of Higher Education Personnel (CAPES).PDF Received16 December 2020Accepted2 December 2021Published online11 January 2022

Referência(s)