Artigo Acesso aberto Revisado por pares

Left atrial reservoir strain improves diagnostic accuracy of the 2016 ASE/EACVI diastolic algorithm in patients with preserved left ventricular ejection fraction: insights from the KARUM haemodynamic database

2022; Oxford University Press; Volume: 23; Issue: 9 Linguagem: Inglês

10.1093/ehjci/jeac036

ISSN

2047-2412

Autores

Ashwin Venkateshvaran, Hande Oktay Türeli, Ulrika Ljung Faxén, Lars H. Lund, Erik Tossavainen, Per Lindqvist,

Tópico(s)

Cardiovascular Health and Disease Prevention

Resumo

Abstract Aims This study aimed to investigate the incremental value offered by left atrial reservoir strain (LASr) to the 2016 American Society of Echocardiography/European Association of Cardiovascular Imaging (ASE/EACVI) diastolic algorithm to identify elevated left ventricular (LV) filling pressure in patients with preserved ejection fraction (EF). Methods and results Near-simultaneous echocardiography and right heart catheterization were performed in 210 patients with EF ≥50% in a large, dual-centre study. Elevated filling pressure was defined as invasive pulmonary capillary wedge pressure (PCWP) ≥15 mmHg. LASr was evaluated using speckle-tracking echocardiography. Diagnostic performance of the ASE/EACVI diastolic algorithm was validated against invasive reference and compared with modified algorithms incorporating LASr. Modest correlation was observed between E/e′, E/A ratio, and LA volume index with PCWP (r = 0.46, 0.46, and 0.36, respectively; P < 0.001 for all). Mitral e′ and TR peak velocity showed no association. The ASE/EACVI algorithm (89% feasibility, 71% sensitivity, 68% specificity) demonstrated reasonable ability (AUC = 0.69) and 68% accuracy to identify elevated LV filling pressure. LASr displayed strong ability to identify elevated PCWP (AUC = 0.76). Substituting TR peak velocity for LASr in the algorithm (69% sensitivity, 84% specificity) resulted in 91% feasibility, 81% accuracy, and stronger agreement with invasive measurements. Employing LASr as per expert consensus (71% sensitivity, 70% specificity) and adding LASr to conventional parameters (67% sensitivity, 84% specificity) also demonstrated greater feasibility (98% and 90%, respectively) and overall accuracy (70% and 80%, respectively) to estimate elevated PCWP. Conclusions LASr improves feasibility and overall accuracy of the ASE/EACVI algorithm to discern elevated filling pressures in patients with preserved EF.

Referência(s)