References
2005; Wiley; Linguagem: Francês
10.1002/9781118186435.refs
ISSN1940-6347
AutoresFrank R. Hampel, Elvezio Ronchetti, Peter J. Rousseeuw, Werner A. Stahel,
Tópico(s)Statistical Mechanics and Entropy
ResumoFree Access References Frank R. Hampel, Frank R. Hampel ETH, Zürich, SwitzerlandSearch for more papers by this authorElvezio M. Ronchetti, Elvezio M. Ronchetti Princeton University, Princeton, New JerseySearch for more papers by this authorPeter J. Rousseeuw, Peter J. Rousseeuw Delft University of Technology, Delft, The NetherlandsSearch for more papers by this authorWerner A. Stahel, Werner A. Stahel ETH, Zürich, SwitzerlandSearch for more papers by this author Book Author(s):Frank R. Hampel, Frank R. Hampel ETH, Zürich, SwitzerlandSearch for more papers by this authorElvezio M. Ronchetti, Elvezio M. Ronchetti Princeton University, Princeton, New JerseySearch for more papers by this authorPeter J. Rousseeuw, Peter J. Rousseeuw Delft University of Technology, Delft, The NetherlandsSearch for more papers by this authorWerner A. Stahel, Werner A. Stahel ETH, Zürich, SwitzerlandSearch for more papers by this author First published: 22 March 2005 https://doi.org/10.1002/9781118186435.refsBook Series:Wiley Series in Probability and Statistics AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Sections in which the reference is cited are given in brackets. M. Abramowitz and I. A. Stegun (eds.) (1972). Handbook of Mathematical Functions (9th printing). Dover, New York. [5.4b] Ahnert, P. (1961). Kalender für Sternfreunde. Johann Ambrosius Barth-Verlag, Leipzig. [8.1a] Akaike H. (1973). Information theory and an extension of the maximum likelihood principle. In: 2nd International Symposium on Information Theory, B. N. Petrov and F. Csaki (eds.). Academiai Kiado, Budapest, pp. 267– 281. [7.1b, 7.3d] Andersen, A. H., Jensen, E. B., and Schou, G. (1981). Two-way analysis of variance with correlated errors. Int. Statist. Rev. 49, 153– 167. [7.1a] Anderson, T. W. (1958). An Introduction to Multivariate Statistical Analysis. Wiley, New York. [2.0] Andrews, D. F. (1974). A robust method for multiple linear regression. Technometrics 16, 523– 531. [6.4a] Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers, W. H., and Tukey, J. W. (1972). Robust Estimates of Location: Survey and Advances. Princeton University Press, Princeton, N.J. [1.2b, 1.2e, 1.3d, 1.3e, 1.4b, 1.ex, 2.1e, 2.3a, 2.6a, 2.6b, 4.4a, 8.2a, 8.2c] Anonymous (1821). Dissertation sur la recherche du milieu le plus probable, entre les résultats de plusieurs observations ou expériences. Ann. Math. Pures Appl. 12, 181– 204. [1.3a] Anscombe, F. J. (1960). Rejection of outliers. Technometrics 2, 123– 147. [1.1b, 1.4b] Anscombe, F. J. and Tukey, J. W. (1963). The examination and analysis of residuals. Technometrics 5, 141– 160. [1.1b] Atkinson, A. C. (1982). Robust and diagnostic regression analysis. Commun. Statist. A 11, 2559– 2571. [6.4d] Bahadur, R. R. (1960). Stochastic comparison of tests. Ann. Math. Statist. 31, 276– 295. [3.6a] Bahadur, R. R. (1971). Some Limit Theorems in Statistics. SIAM, Philadelphia. [3.6a] Barndorff-Nielsen, O. and Cox, D. R. (1979). Edgeworth and saddle-point approximations with statistical applications (with discussion). J. Roy. Statist. Soc. Ser. B 41, 279– 312. [8.5c] Barndorff-Nielsen, O., Blæsild, P., Jensen, J. L., and Jørgensen, B. (1982). Exponential transformation models. Proc. Roy. Soc. London Ser. A 379, 41– 65. [4.5a] Barnett, V. and Lewis, T. (1978). Outliers in Statistical Data. Wiley, New York. [1.1b, 1.3a, 1.4a] Bartlett, M. S. (1935). The effect of non-normality on the t-distribution. Proc. Cambridge Philos. Soc. 31, 223– 231. [1.3a] Beaton, A. E. and Tukey, J. W. (1974). The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics 16, 147– 185. [2.6a] Beckman, R. J. and Cook, R. D. (1983). Outlier…s (with discussion). Technometrics 25, 119– 163. [1.4a] Bednarek-Kozek, B. and Kozek, A. (1977). Stability, sensitivity and sensitivity of characterizations. Preprint 99. Institute of Mathematics, Polish Academy of Sciences, Warsaw. [1.1b] Bednarski, T. (1980). Solution of minimax test problems for special capacities. Preprint 230. Institute of Mathematics, Polish Academy of Sciences, Warsaw. [1.1b, 3.7] Bednarski, T. (1982). Binary experiments, minimax tests and 2-alternating capacities. Ann. Statist. 10, 226– 232. [1.1b, 3.7] Belsley, D. A., Kuh, E., and Welsch, R. E. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. Wiley, New York. [1.1c, 6.4d] Beran, J. (1984). Maximum likelihood estimation for Gaussian processes with long-range dependence. Abstracts Book, 16th European Meeting of Statisticians, Marburg, West Germany, p. 71. [8.1d] Beran, J. and Künsch, H. (1985). Location estimators for processes with long range dependence. Research Report 40. Seminar für Statistik, ETH, Zurich. [8.1c] Beran, R. (1972). Upper and lower risks and minimax procedures. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, pp. 1– 16. [1.1b] Beran, R. (1977a). Robust location estimates. Ann. Statist. 5, 431– 444. [1.1b] Beran, R. (1977b). Minimum Hellinger distance estimates for parametric models. Ann. Statist. 5, 445– 463. [1.1b, 2.3d] Beran, R. (1979). Testing for ellipsoidal symmetry of a multivariate density. Ann. Statist. 7, 150– 162. [1.1b] Beran, R. (1980). Asymptotic lower bounds for risk in robust estimation. Ann. Statist. 8, 1252– 1264. [1.1b] Beran, R. (1982). Robust estimation in models for independent non-identically distributed data. Ann. Statist. 10, 415– 428. [1.1b, 6.4d] Berger, J. (1980). A robust generalized Bayes estimator and confidence region for a multivariate normal mean. Ann. Statist. 8, 716– 761. [1.1b] Berger, J. (1982). Bayesian robustness and the Stein effect. J. Am. Statist. Assoc. 77, 358– 368. [1.1b] Berkson, J. (1938). Some difficulties of interpretation encountered in the application of the chi-square test. J. Am. Statist. Assoc. 33, 526– 536. [8.1c] Bernoulli, D. (1777). Dijudicatio maxime probabilis plurium observationum discrepantium atque verisimillima inductio inde formanda. Acta Acad. Sci. Petropolit. 1, 3– 33. (English translation by C. G. Allen (1961). Biometrika 48, 3–13.) [1.3a] Bessel, F. W. (1818). Fundamenta Astronomiae. Nicolovius, Königsberg. [1.2b] Bessel, F. W. and Baeyer, J. J. (1838). Gradmessung in Ostpreussen und ihre Verbindung mit Preussischen und Russischen Dreiecksketten. Druckerei der Königlichen Akademie der Wissenschaften Berlin. Reprinted in part In Abhandlungen von F. W. Bessel, R. Engelmann (ed.). W. Engelmann, Leipzig, 1876, Vol. 3, pp. 62– 138. [1.2b, 1.3a] Bhansali, R. J. and Downham, D. Y. (1977). Some properties of the order of an autoregressive model selected by a generalization of Akaike's FPE criterion. Biometrika 64, 547– 551. [7.3d] Bickel, P. J. (1975). One-step Huber estimates in the linear model. J. Am. Statist. Assoc. 70, 428– 434. [1.1b, 2.3a, 6.4c] Bickel, P. J. (1976). Another look at robustness: A review of reviews and some new developments. Scand. J. Statist. 3, 145– 168. [1.1b, 7.3a] Bickel, P. J. (1981). Quelques aspects de la statistique robuste. Lecture Notes in Mathematics 876, Springer, Berlin. [1.1b, 4.3c] Bickel, P. J. (1984a). Parametric robustness: Small biases can be worthwhile. Ann. Statist. 12, 864– 879. [1.1b] Bickel, P. J. (1984b). Robust regression based on infinitesimal neighbourhoods. Ann. Statist. 12, 1349– 1368. [1.1b, 6.3b] Bickel, P. J. and Collins, J. R. (1983). Minimizing Fisher information over mixtures of distributions. Sankhy A 45, 1– 19. [1.1b] Bickel, P. J. and Herzberg, A. M. (1979). Robustness of design against autocorrelation in time I: Asymptotic theory, optimality for location and linear regression. Ann. Statist. 7, 77– 95. [1.1b] Bickel, P. J. and Lehmann, E. L. (1975). Descriptive statistics for nonparametric models. I. Introduction. II. Location. Ann. Statist. 3, 1038– 1044. 3, 1045–1069. [1.1b] Billingsley, P. (1961). The Lindeberg-Lévy theorem for martingales. Proc. Am. Math. Soc. 12, 788– 792. [8.3b] Bloomfield, P. and Steiger, W. L. (1983). Least Absolute Deviations: Theory, Applications, and Algorithms. Birkhäuser, Boston. [6.2] Boente, G., Fraiman, R., and Yohai, V. J. (1982). Qualitative robustness for general stochastic processes. Technical Report 26. Department of Statistics, University of Washington, Seattle, Wash. [8.3c] Boos, D. D. (1981). Minimum distance estimators for location and goodness of fit. J. Am. Statist. Assoc. 76, 663– 670. [2.3d] Boos, D. D. and Serfling, R. J. (1976). Development and comparison of M-estimators for location on the basis of the asymptotic variance functional. Statistics Report M380. Florida State University, Tallahassee. [2.5a] Boos, D. D. and Serfling, R. J. (1980). A note on differentials and the CLT and LIL for statistical functions, with application to M-estimates. Ann. Statist. 8, 618– 624. [1.3f, 2.1b, 2.3a] Boscovich, R. J. (1757). De litteraria expeditione per pontificiam ditionem, et synopsis amplioris operis, ac habentur plura eius ex exemplaria etiam sensorum impressa. Bononiensi Scientiarum et Artium Instituto Atque Academia Commentarii 4, 353– 396. [1.3a] Box, G. E. P. (1953). Non-normality and tests on variances. Biometrika 40, 318– 335. [1.2e, 1.3a, 3.1] Box, G. E. P. and Andersen, S. L. (1955). Permutation theory in the derivation of robust criteria and the study of departures from assumption. J. Roy. Statist. Soc. Ser. B 17, 1– 34. [1.2e, 1.3a] Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978). Statistics for Experimenters. Wiley, New York. [8.1a] Box, G. E. P. and Tiao, G. C. (1962). A further look at robustness via Bayes's theorem. Biometrika 49, 419– 432. [1.1b] Box, G. E. P. and Tiao, G. C. (1968). A Bayesian approach to some outlier problems. Biometrika 55, 119– 129. [1.1b] Box, G. E. P. and Tiao, G. C. (1973). Bayesian Inference in Statistical Analysis. Addison-Wesley, Reading, Mass. [1.1b] Breuer, P. and Major, P. (1983). Central limit theorems for non-linear functionals of Gaussian fields. J. Mult. Anal. 13, 425– 441. [8.16] Broffitt, B., Clarke, W. R., and Lachenbruch, P. A. (1980). The effect of Huberizing and trimming on the quadratic discriminant function. Commun. Statist. A 9, 13– 25. [5.1] Brown, G. W. and Mood, A. M. (1951). On median tests for linear hypotheses. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, Calif., pp. 159– 166. [6.4a] Brownlee, K. A. (1965). Statistical Theory and Methodology in Science and Engineering, 2nd ed. Wiley, New York. [6.4a] Bühler, W. J. and Puri, P. S. (1966). On optimal asymptotic tests of composite hypotheses with several constraints. Z. Wahrsch. verw. Geb. 5, 71– 88. [7.4a] Buja, A. (1980). Sufficiency, least favorable experiments and robust tests. Ph.D. thesis. ETH, Zurich. [1.1b] Cambanis S., Huang S., and Simons G. (1981). On the theory of elliptically contoured distributions. J. Mult. Anal. 11, 368– 385. [5.2b] Campbell, N. A. (1978). The influence function as an aid in outlier detection in discriminant analysis. Appl. Statist. 27, 251– 258. [1.1b] Campbell, N. A. (1980). Robust procedures in multivariate analysis I: Robust covariance estimation. Appl. Statist. 29, 231– 237. [1.1b, 5.1] Campbell, N. A. (1982). Robust procedures in multivariate analysis II: Robust canonical variate analysis. Appl. Statist. 31, 1– 8. [1.1b, 5.1] Carroll, R. J. (1979). On estimating variances of robust estimators when the errors are asymmetric. J. Am. Statist. Assoc. 74, 674– 679. [6.4d] Carroll, R. J. (1980). A robust method for testing transformations to achieve approximate normality. J. Roy. Statist. Soc. Ser. B 42, 71– 78. [7.3a] Carroll, R. J. and Ruppert, D. (1980). A comparison between maximum likelihood and generalized least squares in a heteroscedastic linear model. J. Am. Statist. Assoc. 77, 878– 882. [6.4d] Carroll, R. J. and Ruppert, D. (1982). Robust estimation in heteroscedastic linear models. Ann. Statist. 10, 429– 441. [6.4d] Chauvenet, W. (1863). Method of Least Squares. Appendix to Manual of Spherical and Practical Astronomy 2. pp. 469– 566, tables pp. 593–599. Reprinted (1960) (5th ed.). Dover, New York. [1.3a] Chen, Z. and Li, G. (1981). Robust principal components and dispersion matrices via projection pursuit. Research Report. Department of Statistics, Harvard University, Cambridge, Mass. [5.1] Clarke, B. R. (1983). Uniqueness and Fréchet differentiability of functional solutions to maximum likelihood type equations. Ann. Statist. 11, 1196– 1205. [1.3f, 2.3a] Clarke, B. R. (1984a). Asymptotic theory for description of regions in which Newton-Raphson iterations converge to location M-estimators. Research Report. Murdoch University, Murdoch, Western Australia. [1.3f, 8.2c] Clarke, B. R. (1984b). Nonsmooth analysis and Fréchet differentiability of M-functionals. Research Report. Murdoch University, Murdoch, Western Australia. [1.3f, 2.3a] Coale, A. J. and Stephan, F. F. (1962). The case of the Indians and the teen-age widows. J. Am. Statist. Assoc. 57, 338– 347. [1.2c] Cochran, W. G. (1947). Some consequences when the assumptions for the analysis of variance are not satisfied. Biometrics 3, 22– 38. [1.2c] Cochran, W. G. and Cox, G. M. ((1950) 1957). Experimental Designs. Wiley, New York. [1.1d] Collins, J. R. (1976). Robust estimation of a location parameter in the presence of asymmetry. Ann. Statist. 4, 68– 85. [2.3a, 2.6c, 2.7] Collins, J. R. (1977). Upper bounds on asymptotic variances of M-estimators of location. Ann. Statist. 5, 646– 657. [2.3a, 2.7] Collins, J. R. (1982). Robust M-estimators of location vectors. J. Mult. Anal. 12, 480– 492. [5.1] Collins, J. R. and Portnoy, S. L. (1981). Maximizing the variance of M-estimators using the generalized method of moment spaces. Ann. Statist. 9, 567– 577. [2.5a, 2.7] Collins, J. R., Sheahan, J. N., and Zheng, Z. (1985). Robust estimation in the linear model with asymmetric error distributions. J. Mult. Anal. 15 (to appear). [6.4d] Cook, R. D. and Weisberg, S. (1980). Characterization of an empirical influence function for detecting influential cases in regression. Technometrics 22, 495– 508. [6.4d] Cook, R. D. and Weisberg, S. (1982). Residuals and Influence in Regression. Chapman and Hall, New York. [1.1c, 6.4d] Cox, D. (1981). Metrics on stochastic processes and qualitative robustness. Technical Report 3. Department of Statistics, University of Washington, Seattle, Wash. [8.3c] Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. Chapman and Hall, London. [4.6b] Cramèr, H. (1938). Sur un nouveau théorème-limite de la théorie des probabilités. Actualités scientifiques et industrielles 736, Hermann, Paris. [8.5a] Cushny, A. R. and Peebles, A. R. (1905). The action of optical isomers. II. Hyoscines. J. Physiol. 32, 501– 510. [2.0] Daniel, C. (1976). Applications of Statistics to Industrial Experimentation. Wiley, New York. [1.1c, 1.1d, 1.2c, 1.4a, 8.4b] Daniel, C. and Wood, F. S. ((1971) 1980). Fitting Equations to Data. Wiley, New York. [1.2c, 1.4a, 6.4a, 6.4c, 8.1a] Daniels, H. E. (1954). Saddlepoint approximations in statistics. Ann. Math. Statist. 25, 631– 650. [1.3d, 3.2c, 7.5b, 8.5a] Daniels, H. E. (1980). Exact saddlepoint approximations. Biometrika 67, 59– 63. [8.5c] Daniels, H. E. (1983). Saddlepoint approximations for estimating equations. Biometrika 70, 89– 96. [8.5b] de Finetti, B. (1961). The Bayesian approach to the rejection of outliers. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, University of California Press, Berkeley, Calif., pp. 199– 210. [1.1b] Dempster, A. P. (1968). A generalization of Bayesian inference (with discussion). J. Roy. Statist. Soc. Ser. B 30, 205– 247. [1.1b] Dempster, A. P. (1975). A subjectivist look at robustness. Proceedings of the 40th Session of the ISI, Warsaw, Vol. XLVI, Book 1, pp. 349– 374. [1.1b, 1.3f, 1.4a] Denby, L. and Mallows, C. L. (1977). Two diagnostic displays for robust regression analysis. Technometrics 19, 1– 13. [1.1b] Devlin, S. J., Gnanadesikan, R., and Kettenring, J. R. (1975). Robust estimation and outlier detection with correlation coefficients. Biometrika 62, 531– 545. [5.1] Devlin, S. J., Gnanadesikan, R., and Kettenring, J. R. (1981). Robust estimation of dispersion matrices and principal components. J. Am. Statist. Assoc. 76, 354– 362. [5.1] Dobrushin, R. L. (1979). Gaussian and their subordinated self-similar random generalized fields. Ann. Prob. 7, 1– 28. [8.1b] Dobrushin, R. L. and Major, P. (1979). Non-central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrsch. verw. Geb. 50, 27– 52. [8.1b] Donoho, D. L. (1982). Breakdown properties of multivariate location estimators. Ph.D. qualifying paper. Department of Statistics, Harvard University, Cambridge, Mass. [2.3d, 5.1, 5.5c] Donoho, D. L. and Huber, P. J. (1983). The notion of breakdown point. In A Festschrift for Erich L. Lehmann, P. J. Bickel, K. A. Doksum, J. L. Hodges (eds.). Wadsworth, Belmont, Calif., pp. 157– 184. [1.4b, 2.2a, 5.1, 5.5c] Donoho, D. L., Johnstone, I., Rousseeuw, P. J., and Stahel, W. A. (1985). Comments on ‘Projection Pursuit’ by P. J. Huber. Ann. Statist. 13, 496– 500. [2.3d] Draper, N. R. and Smith, H. ((1966) 1981). Applied Regression Analysis. Wiley, New York. [6.4a, 7.5d, 8.2b] Durbin, J. (1980). Approximations for densities of sufficient estimators. Biometrika 67, 311– 333. [8.5c] Dutter, R. (1976). Computer linear robust curve fitting program LINWDR. Research Report 10. Fachgruppe für Statistik, ETH, Zurich. [6.4c] Dutter, R. (1977). Numerical solution of robust regression problems: Computational aspects, a comparison. J. Statist. Comput. Simul. 5, 207– 238. [6.4c] Dutter, R. (1979). Robuste Regression. Bericht Nr. 135 (1980). Institut für Statistik, Technische Universität, Graz, Austria. [6.4c] Dutter, R. (1983). Computer program BLINWDR for robust and bounded influence regression. Research Report 8. Institut für Statistik, Technische Universität, Graz, Austria. [6.4c] Dwyer, P. S. (1967). Some applications of matrix derivatives in multivariate analysis. J. Am. Statist. Assoc. 62, 607– 625. [5.2b] Easton, G. S. and Ronchetti, E. (1984). General saddlepoint approximations with applications to L-statistics. Technical Report 274, Series 2. Department of Statistics, Princeton University, Princeton, N.J. (to appear in J. Am. Statist. Assoc.). [8.5c] Edgeworth, F. Y. (1883). The method of least squares. Philos. Mag. 23, 364– 375. [1.3a] Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist. 7, 1– 26. [2.1e] Eplett, W. J. R. (1980). An influence curve for two-sample rank tests. J. Roy. Statist. Soc. Ser. B 42, 64– 70. [3.1, 3.6b] Ezekiel, M. and Fox, K. A. (1959). Methods of Correlation and Regression Analysis. Wiley, New York. [6.1b] Feller, W. (1951). The asymptotic distribution of the range of sums of independent random variables. Ann. Math. Statist. 22, 427– 432. [8.1b] Feller, W. ((1966) 1971). An Introduction to Probability Theory and Its Applications, Vol. II. Wiley, New York. [8.5a] Fernholz, L. T. (1983). Von Mises Calculus for Statistical Functionals. Lecture Notes in Statistics 19. Springer, New York. [1.3f, 2.1b, 2.3a] Field, C. A. (1982). Small sample asymptotic expansions for multivariate M-estimates. Ann. Statist. 10, 672– 689. [7.5b, 8.5c] Field, C. A. and Hampel, F. R. (1978). Small-sample asymptotic distributions of M-estimators of location. Research Report 17. Fachgruppe für Statistik, ETH, Zurich. [1.3d, 3.2c, 7.5b, 8.2a, 8.5b, 8.5c] Field, C. A. and Hampel, F. R. (1982). Small-sample asymptotic distributions of M-estimators of location. Biometrika 69, 29– 46. [1.3d, 3.2c, 7.5b, 8.2a, 8.5b, 8.5c] Field, C. A. and Ronchetti, E. (1985). A tail area influence function and its application to testing. Commun. Statist. Ser. C. 4 (19–41). [3.2c, 8.5c] Filippova, A. A. (1961). Mises' theorem on the asymptotic behavior of functionals of empirical distribution functions and its statistical applications. Theory Prob. Appl. 7, 24– 57. [2.1d] Fisher, R. A. (1920). A mathematical examination of the methods of determining the accuracy of an observation by the mean error and by the mean square error. Mon. Not. Roy. Astr. Soc. 80, 758– 770. [1.2d] Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philos. Trans. Roy. Soc. London Ser. A 222, 309– 368. [1.2d, 1.2e, 1.3f, 8.2a] Fisher, R. A. ((1925)1970). Statistical Methods for Research Workers. Oliver & Boyd, Edinburgh. [1.2a, 2.0] Fisher, R. A. and Mackenzie, W. A. (1922). The correlation of weekly rainfall. Quart. J. Roy. Meteorol. Soc. 48, 234– 242. [8.1a] Foutz, R. V. and Srivastava, R. C. (1977). The performance of the likelihood ratio test when the model is incorrect. Ann. Statist. 5, 1183– 1194. [7.2b] Fox, R. and Taqqu, M. S. (1984). Maximum likelihood type estimation for the self-similarity parameter in Gaussian sequences. Technical Report 590. Operations Research, Cornell University, Ithaca, N.Y. [8.1b, 8.1d] Fraser, D. A. S. (1968). The Structure of Inference. Wiley, New York. [4.5a] Freedman, D., Pisani, R., and Purves, R. (1978). Statistics. Norton, New York. [1.2c, 8.1a] Freedman, H. W. (1966). The “little variable factor”. A statistical discussion of the reading of seismograms. Bull. Seismol. Soc. Am. 56, 593– 604. [1.2c] Gastwirth, J. L. (1966). On robust procedures. J. Am. Statist. Assoc. 61, 929– 948. [2.3b] Gastwirth, J. L. and Rubin, H. (1975). The behavior of robust estimators on dependent data. Ann. Statist. 3, 1070– 1100. [1.1b] Gauss, C. F. (1816). Bestimmung der Genauigkeit der Beobachtungen. Z. Astr. verw. Wiss. In Werke 4, Dieterichsche Universitäts-Druckerei, Göttingen (1880), pp. 109– 117. [1.4b] Gauss, C. F. (1823). Theoria combinationis observationum erroribus minimis obnoxiae (pars prior), presented 2/15/1821. Commentationes societatis regiae scientiarium Gottingensis recentiores, Vol. 5, Göttingen. In Werke 4, Dieterichsche Universitäts-Druckerei, Göttingen (1880), pp. 1– 108. [1.3a] Gayen, A. K. (1950). The distribution of the variance ratio in random samples of any size drawn from non-normal universes. Biometrika 37, 236– 255. [1.3a] Geary, R. C. (1936). The distribution of ‘Student's’ ratio for non-normal samples. J. Roy. Statist. Soc. Suppl. 3, 178– 184. [1.3a] Geary, R. C. (1947). Testing for normality. Biometrika 34, 209– 242. [1.3a] Gentleman, W. M. (1965). Robust estimation of multivariate location by minimizing p-th power deviations. Ph.D. thesis. Princeton University, Princeton, N.J. [2.3d] Glaisher, J. W. L. (1872–73). On the rejection of discordant observations. Mon. Not. Roy. Astr. Soc. 33, 391– 402. [1.3a] Gnanadesikan, R. (1977). Methods for Statistical Data Analysis of Multivariate Observations. Wiley, New York. [5.1] Gnanadesikan, R. and Kettenring, J. R. (1972). Robust estimates, residuals, and outlier detection with multiresponse data. Biometrics 28, 81– 124. [5.1] Graf, H. (1983). Long-range correlations and estimation of the self-similarity parameter. Ph.D. thesis. ETH, Zurich. [8.1a, 8.1b, 8.1d] Graf, H., Hampel, F. R., and Tacier, J. (1984). The problem of unsuspected serial correlations. In Robust and Nonlinear Time Series Analysis. J. Franke, W. Härdle, R. D. Martin (eds.), Lecture Notes in Statistics 26. Springer, New York, pp. 127– 145. [8.1a, 8.1b, 8.1c, 8.1d] Grenander, U., Pollak, H. O., and Slepian, D. (1959). The distribution of quadratic forms in normal variates: A small sample theory with applications in spectral analysis. J. Soc. Ind. Appl. Math. 7, 374– 401. [7.5b] Gross, A. M. and Tukey, J. W. (1973). The estimators of the Princeton robustness study. Technical Report 38, Series 2. Department of Statistics, Princeton University, Princeton, N.J. [1.4b] Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples. Technometrics 11, 1– 21. [1.4b] Hájek, J. and Ŝidák, Z. (1967). Theory of Rank Tests. Academic Press, New York. [3.3a, 3.3b] Hampel, F. R. (1968). Contributions to the theory of robust estimation. Ph.D. thesis. University of California, Berkeley. [1.1a, 1.1c, 1.3a, 1.3d, 1.3f, 2.1b, 2.1c, 2.2a, 2.4a, 2.7, 8.2a] Hampel, F. R. (1971). A general qualitative definition of robustness. Ann. Math. Statist. 42, 1887–1896. [1.1c, 1.3d, 2.2a, 2.2b, 2.3a, 2.3c] Hampel, F. R. (1973a). Robust estimation: A condensed partial survey. Z. Wahrsch. verw. Geb. 27, 87– 104. [1.1a, 1.2e, 1.3d, 1.4a, 2.5a, 5.1, 6.1b, 6.2, 7.1b, 8.2a] Hampel, F. R. (1973b). Some small sample asymptotics. Proceedings of the Prague Symposium on Asymptotic Statistics, Prague, pp. 109– 126. [1.3d, 3.2c, 7.5b, 8.5a] Hampel, F. R. (1974). The influence curve and its role in robust estimation. J. Am. Statist. Assoc. 69, 383– 393. [1.1c, 1.1d, 1.3d, 1.4b, 2.1b, 2.1c, 2.2b, 2.5a, 2.ex, 6.2, 8.2c] Hampel, F. R. (1975). Beyond location parameters: Robust concepts and methods (with discussion). Proceedings of the 40th Session of the ISI, Vol. XLVI, Book 1, pp. 375– 391. [1.1d, 1.2b, 1.3d, 2.3d, 4.6b, 5.1, 5.4b, 6.4a, 8.4a, 8.4b] Hampel, F. R. (1976). On the breakdown points of some rejection rules with mean. Research Report 11. Fachgruppe für Statistik, ETH, Zurich. [1.2c, 1.2d, 1.4b, 2.2b] Hampel, F. R. (1977). Rejection rules and robust estimates of location: An analysis of some Monte Carlo results. Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, 1974 European Meeting of Statisticians, Vol. A, pp. 187– 194. [1.2d, 1.4b] Hampel, F. R. (1978a). Modern trends in the theory of robustness. Math. Operationsforschung Statist. Ser. Statist. 9, 425– 442. [1.2d, 1.3d, 1.4a, 1.4b, 6.1b, 8.2a] Hampel, F. R. (1978b). Optimally bounding the gross-error-sensitivity and the influence of position in factor space. Proceedings of the ASA Statistical Computing Section, ASA, Washington, D.C., pp. 59– 64. [6.2, 6.3a, 6.3b] Hampel, F. R. (1979). Discussion of the meeting on robustness. Proceedings of the 42nd Session of the ISI, Manila, Vol. XLVIII, Book 2, pp. 100– 102. [1.1c, 8.1c] Hampel, F. R. (1980). Robuste Schätzungen: Ein anwendungsorientierter Überblick. Biom. J. 22, 3– 21. [1.1d, 1.2d, 1.3d, 1.4a, 1.4b, 6.1b, 7.1b, 8.2a, 8.4a] Hampel, F. R. (1983a). The robustness of some nonparametric procedures. In A Festschrift for Erich L. Lehmann, P. J. Bickel, K. A. Doksum, and J. L. Hodges Jr. (eds.). Wadsworth, Belmont, Calif., pp. 209– 238. [1.1b, 1.3d, 1.3e, 8.2c] Hampel, F. R. (1983b). Some aspects of model choice in robust statistics. Proceedings of the 44th Session of the ISI, Madrid, Book 2, pp. 767– 771. [1.3f, 7.3d] Hampel, F. R. (1985). The breakdown points of the mean combined with some rejection rules. Technometrics 27, 95– 107. [1.2c, 1.4b, 8.2a] Hampel, F. R., Rousseeuw, P. J., and Ronchetti, E. (1981). The change-of-variance curve and optimal redescending M-estimators. J. Am. Statist. Assoc. 76, 643– 648. [1.3d, 1.3e, 2.5a, 2.6a, 2.6b, 2.6c] Hampel, F. R., Marazzi, A., Ronchetti, E.,
Referência(s)