Outro Revisado por pares

References

2021; Multidisciplinary Digital Publishing Institute; Linguagem: Inglês

10.1002/9781119818038.refs

ISSN

2673-1924

Autores

Guy Jacques, Paul Tréguer, Herlé Mercier,

Tópico(s)

Microbial Community Ecology and Physiology

Resumo

Free Access References Guy Jacques, Search for more papers by this authorPaul Tréguer, Search for more papers by this authorHerlé Mercier, Search for more papers by this author Book Author(s):Guy Jacques, Search for more papers by this authorPaul Tréguer, Search for more papers by this authorHerlé Mercier, Search for more papers by this author First published: 20 April 2021 https://doi.org/10.1002/9781119818038.refs AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinked InRedditWechat References Abraham, E.-R., Law, C.-S., Boyd, P.-W. et al. (2000). Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature, 407(6805), 727–730. CrossrefWeb of Science®Google Scholar Adler, A. (2013). The end of “Oceanography”? [Online]. Available at: https://oceansciencehistory.wordpress.com/2013/09/28/the-end-of-oceanography/. Google Scholar Adler, A. (2014). The entangled history of oceanography and medicine [Online]. Available at: https://oceansciencehistory.wordpress.com/2014/11/19/the-entangled-history-of-oceanography-and-medicine/. Google Scholar Agusti, S., González, J.-I., Vaqué, D. et al. (2015). Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nature Communications, 6(7608), 10.1038/ncomms8608. CrossrefPubMedWeb of Science®Google Scholar Altizer, S., Ostfeld, R.-S., Johnson, P.-T. et al. (2013). Climate change and infectious diseases: From evidence to a predictive framework. Science, 341(6145), 514– 519. CrossrefCASPubMedWeb of Science®Google Scholar Alvain, S., Le Quéré, C., Bopp, L. et al. (2013). Rapid climatic driven shifts of diatoms at high latitudes. Remote Sensing of Environment, 132, 195– 201. CrossrefWeb of Science®Google Scholar Aminot, A. and Chaussepied, M. (1983). Manuel des analyses chimiques en milieu marin. Cnexo, Brest. Google Scholar Anderson, R.-F. and Smith, W.-O. Jr. (2001). The US Southern Ocean Joint Global Ocean Flux Study. Deep-Sea Research Part II, 48, 3883– 3890. CrossrefWeb of Science®Google Scholar Anonymous. (2014). Editorial: Eighty years of Redfield. Nature Geosciences, 7, 849. CrossrefWeb of Science®Google Scholar Antoine, D., Babin, M., Berthon, J.-F. et al. (2014). Shedding light on the sea: André Morel's legacy to optical oceanography. Annual Review of Marine Science, 6, 1– 21. CrossrefPubMedWeb of Science®Google Scholar Arnaud-Haond, S. (2017). Quels enjeux pour les ressources Énergétiques? In L'océan à découvert , E. Euzen, F. Gaill, D. Lacroix et al. (eds). CNRS Éditions, Paris, 32– 33. Google Scholar Arrigo, K.-R., DiTullio, G.-R., Dunbar, R.-B. et al. (2000). Phytoplankton taxonomic variability in nutrient utilization and primary production in the Ross Sea. Journal of Geophysical Research, 105(C4), 8827– 8846. Wiley Online LibraryCASWeb of Science®Google Scholar Asplund, L. and Haverinen, A. (1978). National Environment Protection Board, Sweden and National Water Board, Finland. Report, 1– 15. Google Scholar Auger, P.-A., Ulses, C., Estournel, C. et al. (2014). Interannual control of plankton communities by deep winter mixing and prey/predator interactions in the NW Mediterranean: Results from a 30-year 3D modeling study. Progress in Oceanography, 124, 12– 27. CrossrefWeb of Science®Google Scholar Augustyn, J., Petersen, S., Shannon, L. et al. (2014). Implementation of the ecosystem approach to fisheries in the Benguela Current LME area. In Governance of Marine Fisheries and Biodiversity Conservation: Interaction and Co-evolution, S.-M. Garcia, J. Rice, A. Charles (eds). Wiley-Blackwell, Oxford. Wiley Online LibraryGoogle Scholar Aumont, O., Bopp, L. (2006). Globalizing results from ocean in situ iron fertilization studies. Global Biogeochemical Cycles, 20, 1–15, GB2017, https://doi:10.1029/2005GB002591. Google Scholar Azam, F., Fenchel, T., Field, J.-G. et al. (1983). The ecological role of water-column microbes in the sea. Marine Ecology Progress Series, 10, 257– 263. CrossrefWeb of Science®Google Scholar Baar (de), H.-J.-W., Gerringa, L.-J.-A., Laan, P. et al. (2008). Efficiency of carbon removal per added iron in ocean iron fertilization. Marine Ecology Progress Series, 364, 269– 282. CrossrefWeb of Science®Google Scholar Bainbridge, A.-E. (1981). The entangled history of oceanography and medicine [Online]. Available at: https://oceansciencehistory.wordpress.com/2014/11/19/the-entangled-history-of-oceanography-and-medicine/. Google Scholar Baker-Austin, C., Trinanes, J.-A., Taylors, N.-G.-H. et al. (2013). Emerging Vibrio risk at high latitudes in response to ocean warming. Nature Climate Change, 3, 73– 77. CrossrefWeb of Science®Google Scholar Bakker, D.-C.-E., Bozec, Y., Nightingale, P.-D. et al. (2005). Iron and mixing affect biological carbon uptake in SOIREE and EisenEx, two Southern Ocean iron fertilisation experiments. Deep Sea Research Part I, 52(6), 1001– 1019. CrossrefCASGoogle Scholar Balch, W.-M., Kilpatrick, K.-A., and Trees, C.-C. (1996a). The 1991 coccolitophore bloom in the central North Atlantic. 1. Optical properties and factors affection their distribution. Limnology and Oceanography, 41(8), 1669– 1683. Wiley Online LibraryWeb of Science®Google Scholar Balch, W.-M., Kilpatrick, K.-A., Holligan, P. et al. (1996b). The 1991 coccolithophore bloom in the central North Atlantic. 2. Relating optics to coccolith concentration. Limnology and Oceanography, 41(8), 1684– 1696. Wiley Online LibraryWeb of Science®Google Scholar Barrier, N., Cassou, C., Deshayes, J. et al. (2014). Response of North Atlantic Ocean circulation to atmospheric weather regime. Journal of Physical Oceanography, 44, 179– 201. CrossrefWeb of Science®Google Scholar Barton, A.-D., Pershing, A.-J., Litchman, E.-L. et al. (2013). The biogeography of marine plankton traits. Ecology Letters, 16(4), 522– 534. Wiley Online LibraryPubMedWeb of Science®Google Scholar Bathmann, U., Pridle, J., Tréguer, P. et al. (2000). Plankton ecology and biogeochemistry in the Southern Ocean: A review of the Southern Ocean JGOFS . In The Changing Ocean Carbon Cycle: A Midterm Synthesis of the Joint Global Ocean Flux Study, J.-G. Field, B. Hanson, H.-W. Ducklow (eds). Cambridge University Press, Cambridge, 300– 339. Google Scholar Beaugrand, G., Brander, K.-M., Lindley, A. et al. (2003). Plankton effect on cod recruitment in the North Sea. Nature, 426, 661– 664. CrossrefCASPubMedWeb of Science®Google Scholar Becker, M., Meyssignac, B., Letetrel, C. et al. (2012). Sea level variations at tropical Pacific islands since 1950. Global and Planetary Change, 80, 85– 98. CrossrefWeb of Science®Google Scholar Behrenfeld, M.-J. (2010). Abandoning Sverdrup's critical depth hypothesis on phytoplankton blooms. Ecology, 91, 977– 989. Wiley Online LibraryPubMedWeb of Science®Google Scholar Belgrano, A. and Fowler, C-.W. (2013). How fisheries affect evolution. Science, 342, 1176– 1177. CrossrefPubMedWeb of Science®Google Scholar Berge, J., Cottier, F., Varpe, ø. et al. (2014). Arctic complexity: A case study on diel vertical migration of zooplankton. Journal of Plankton Research, 36(5), 1279– 1297. CrossrefPubMedWeb of Science®Google Scholar Bertrand, A., Ballón, M., and Chaigneau, A. (2010). Acoustic observation of living organisms reveals the upper limit of the oxygen minimum zone. PLoS ONE, 5(4): e10330, https://doi.org/10.1371/journal.pone.0010330. CrossrefWeb of Science®Google Scholar Beszteri, S., Thoms, S., Benes, V. et al. (2018). The response of three Southern Ocean phytoplankton species to ocean acidification and light availability: A transcriptiomic study. Protist, 169, 958– 975. CrossrefPubMedWeb of Science®Google Scholar BÉthoux, J.-P. and Prieur, L. (1983). Hydrologie et circulation en MÉditerranée nordoccidentale. PÉtrole et techniques, 299, 25– 34. Google Scholar Bianchi, D., Galbraith, E.-D., Carozza, D.-A. et al. (2013). Intensification of open-ocean oxygen depletion by vertically migrating animals. Nature Geosciences, 6, 545– 546. CrossrefCASWeb of Science®Google Scholar Biard, T., Stemmann, L., Picheral, M. et al. (2016). In situ imaging reveals the biomass of giant protists in the global ocean. Nature, 532, 504– 507. CrossrefCASPubMedWeb of Science®Google Scholar Bjerknes, J. (1964). Atlantic air-sea interactions. Advances in Geophysics, 10, 1– 82. CrossrefGoogle Scholar Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97, 163– 172. CrossrefWeb of Science®Google Scholar Blain, S., Quéginer, B., Armand, L.-K. et al. (2007). Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature, 446(7139), 1070– 1074. CrossrefCASPubMedWeb of Science®Google Scholar Blain, S., Quéginer, B., and Trull, T. (2008). The natural iron fertilization experiment KEOPS (Kerguelen Ocean and Plateau compared Study): An overview. Deep Sea Research Part II, 55, 559– 565. CrossrefWeb of Science®Google Scholar Blain, S., Renaut, S., Xing, X. et al. (2013). Instrumental elephant seals reveal the seasonality in chlorophyll and light-limiting regime in the iron-fertilized Southern Ocean. Geophysical Research Letters, 40(24), 6368– 6372. Wiley Online LibraryCASWeb of Science®Google Scholar Blain, S., Capparos, J., Guéneuguès, A. et al. (2015). Distributions and stoichiometry of dissolved nitrogen and phosphorus in the iron fertilized region near Kerguelen (Southern Ocean). Biogeosciences, 12, 623– 635. CrossrefCASWeb of Science®Google Scholar Bonatti, E. and Nayudu, Y.-R. (1965). The origin of manganese nodules on the ocean floor. American Journal of Science, 263, 17– 39. CrossrefCASWeb of Science®Google Scholar Bopp, L., Resplandy, L., Orr, J.-C. et al. (2013). Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences, 10, 6225– 6245. CrossrefWeb of Science®Google Scholar Bougerol, M., Boutet, I., Le Guen, D. et al. (2014). Transcriptomic response of the hydrothermal mussel Bathymodiolus azoricus in experimental exposure to heavy metals is modulated by the Pgm genotype and symbiont content. Marine Genomics, 21, 63– 73. CrossrefPubMedWeb of Science®Google Scholar Boyd, P.-W., Jickells, T., Law, C.-S. et al. (2007). Mesoscale iron enrichment experiments 1993-2005: Synthesis and futures directions. Science, 315, 612– 617. CrossrefCASPubMedWeb of Science®Google Scholar Boyd, P.-W., Cornwall, C.-E., Davison, A. et al. (2016). Biological responses to environmental heterogeneity under future ocean conditions. Global Change Biology, 22(8), 2633– 2650. Wiley Online LibraryPubMedWeb of Science®Google Scholar Boyd, P.-W., Claustre, H., Levy, M. et al. (2019). Multi-faceted particle pump drive carbon sequestration in the ocean. Nature, 568, 327– 335. CrossrefCASPubMedWeb of Science®Google Scholar Bozzano, R., Fanelli, E., Pensieri, S. et al. (2014). Temporal variations of zooplankton biomass in the Ligurian Sea inferred from long time series of ADCP data. Ocean Science, 10, 93– 105. CrossrefWeb of Science®Google Scholar Brachet, S., Le Traon, P.-Y., and Le Provost, C. (2004). Mesoscale variability from a high-resolution model and from altimeter data in the North Atlantic Ocean. Journal of Geophysical Research, 109(C12025), 1– 16. Google Scholar Branch, T.-A. (2008). Not all fisheries will be collapsed in 2048. Marine Policy, 32(1), 38– 39. CrossrefWeb of Science®Google Scholar Breitburg, D., Gregoire, M., et al. (2018a). The ocean is losing its breath. Declining oxygen in the global ocean and coastal waters. Program and meeting document. UNESCO, Intergovernmental Oceanographic Commission, Paris. Google Scholar Breitburg, D., Levin, L.-A., Oschlies, A. et al. (2018b) Declining oxygen in the global ocean and coastal waters. Science, 359, eam7240 (2010), 10.1126/science.aam7240. CrossrefPubMedWeb of Science®Google Scholar Brewer, P.-G. (1978). Direct observations of the oceanic CO2 increase. Geophysical Research Letters, 5, 997– 1000. Wiley Online LibraryCASWeb of Science®Google Scholar Brewer, P.-G. (2003). Foreword. In Ocean Biogeochemistry. The Role of the Ocean Carbon Cycle in Global Change, M.-J.-R. Fasham (ed.). Springer, Berlin. Google Scholar Broecker, W.-S. (1974). “NO”, a conservative water-mass tracer. Earth and Planetary Science Letters, 23, 100– 107. CrossrefCASWeb of Science®Google Scholar Broecker, W.-S. (1975). Climate change: Are we on the brink of a pronounced global warming? Science, 189(4201), 460– 463. CrossrefCASPubMedWeb of Science®Google Scholar Broecker, W.-S. (2000). Was a change in thermohaline circulation responsible for the Little Ice Age? Proceedings of the National Academy of Sciences of the United States of America, 97(4), 1339– 1342. CrossrefCASPubMedWeb of Science®Google Scholar Broecker, W.-S. and Peng, T.-H. (1982). Tracers in the Sea. Lamont-Doherty Geological Observatory, Columbia University, New York. Google Scholar Brønsted, J.-N. (1928). Acid and basic catalysis. Chemical Reviews, 5, 231– 338. CrossrefCASWeb of Science®Google Scholar Buch, K. (1945). Kolsyrejämvikten i Baltiska Havet. Fennia, 68, 1– 208. Google Scholar Butcher, R.-W. (1952). Contribution to our knowledge of the smaller marine algae. Journal of the Marine Biological Association of the United Kingdom, 31(1), 175– 191. CrossrefWeb of Science®Google Scholar Cane, M.-A. (1983). Oceanographic events during El Niño. Science, 222(4629), 1189– 1195. CrossrefCASPubMedWeb of Science®Google Scholar Cannat, M. (2017). Observatoires du fond de mer et de la colonne d'eau. In L'océan à découvert , A. Euzen, F. Gaill, D. Lacroix et al. (eds). CNRS Éditions, Paris, 112– 113. Google Scholar Carré, F. (2001). Les grandes expéditions océanographiques (1900-1956). In Sous la mer: le sixième continent, C. Buchet (ed.). Presses de l'Université Paris-Sorbonne, Paris, 183– 203. Google Scholar Carrington, D. (2012). Dumping iron at sea can bury carbon for centuries, study shows. The Guardian, July 18. Google Scholar Carstensen, J., Andersen, J.-H., Gustafsson, B.-G. et al. (2014a). Desoxygenation of the Baltic Sea during the last century. Proceedings of the National Academy of Sciences of the United States of America, 111(15), 5628– 5633. CrossrefCASPubMedWeb of Science®Google Scholar Carstensen, J., Conley, D.-J., Bonsdorff, E. et al. (2014b). Hypoxia in the Baltic Sea: Biogeochemical cycles, benthic fauna, and management. Ambio, 43, 26– 36. CrossrefCASPubMedWeb of Science®Google Scholar Cazenave, A., Palanisamy, H., Ablain, M. (2018). Temporary sea level changes from satellite altimetry: What have we learned? What are the new challenges? Advances in Space Research, 62, 1639– 1653. CrossrefWeb of Science®Google Scholar Chapman, C.-C. (2017). New perspectives on frontal variability in the Southern Ocean. Journal of Physical Oceanography, 47, 1151– 1168. CrossrefWeb of Science®Google Scholar Chappuis, V. (1992). Genèse d'une bibliothèque scientifique: Henri de Lacaze-Duthiers (1821-1901) et la bibliothèque du Laboratoire Arago à Banyuls-sur-Mer. Thesis, Enssib, Paris. Google Scholar Charrette, M.-A. and Buesseler, K.-O. (2000). Does iron fertilization lead to rapid carbon export in the Southern Ocean? Geochemistry, Geophysics, Geosystems, 1, Paper number 2000GC00006, 10.1029/2000GC000069. Wiley Online LibraryGoogle Scholar Chelton, D.-B., Schlax, M.-G., Samelson, R.-M. (2011). Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2), 167– 216. CrossrefWeb of Science®Google Scholar Chiba, S., Hirawake, T., Ushio, S. et al. (2000). An overview of the biological/oceanographic survey by the RTV Umitaka-Maru III of Adelie Land, Antarctica in January-February 1996. Deep-Sea Research Part II, 47(12–13), 2589– 2613. CrossrefWeb of Science®Google Scholar Chisholm, S.-W., Olson, R.-J., Zettler, E.-R. et al. (1988). A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature, 334, 340– 343. CrossrefWeb of Science®Google Scholar Chisholm, S.-W., Frankel, S.-L., Goericke, R. et al. (1992). Prochlorococcus marinus nov. gen. nov. sp.: An oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Archives of Microbiology, 157, 297– 300. CrossrefCASWeb of Science®Google Scholar Chiswell, S.-M. (2011). Annual cycles and spring blooms in phytoplankton: Don't abandon Sverdrup completely. Marine Ecology Progress Series, 443, 39– 50. CrossrefWeb of Science®Google Scholar Coale, K.-H. (2001). Iron fertilization. In Encyclopedia of Ocean Sciences, J.-H. Steele, S.-A. Thorpe, K.-K. Turekian (eds). Elsevier, Amsterdam. CrossrefGoogle Scholar Coello-Camba, A. and Agusti, S. (2016). Acidification counteracts negative effects of warming on diatom silification. Biogeosciences Discussions, 1–19. 10.5194/bg-2016-424, 20. CrossrefGoogle Scholar Collins, P.-C., Croot, P., Carlsson, J. et al. (2013). A primer for the environmental impact assessment of mining at seafloor massive sulfide deposits. Marine Policy, 42, 198– 209. CrossrefWeb of Science®Google Scholar Conley, D.-J., Bonsdorff, E., Carstensen, J. et al. (2009). Tackling hypoxia in the Baltic Sea: Is engineering a solution? Environmental Science & Technology, 43(10), 3407– 3411. CrossrefCASPubMedWeb of Science®Google Scholar Connell, J.-H. (1961). Effects of competition, predation by Thais lapillus, and other factors on natural populations of the barnacle Balanus balanoides. Ecological Monographs, 31, 61– 104. Wiley Online LibraryWeb of Science®Google Scholar Copin-Montegut, C. and Copin-Montegut, G. (1983). Stoichiometry of carbon, nitrogen, and phosphorus in marine particulate matter. Deep-Sea Research Part II, 43, 971– 993. Google Scholar Corfield, R. (2003). Silent Landscape: The Scientific Voyage of HMS Challenger. Joseph Henry Press, Washington. Google Scholar Coste, B., Gostan, J., and Minas, H.-J. (1972). Influence des conditions hivernales sur les productions phytoet zooplanctoniques en MÉditerranée nord-occidentale. I. Structure hydrologique et distribution des sels nutritifs. Marine Biology, 16(4), 320– 348. CASGoogle Scholar Costello, C., Ovando, D., Clavelle, T. et al. (2016). Global fishery prospects under contrasting management regimes. Proceedings of the National Academy of Sciences of the United States of America, 113(18), 5125– 5129. CrossrefCASPubMedWeb of Science®Google Scholar Costello, M.-J. and Chaudhary, C. (2017). Marine biodiversity, biogeography, deep-sea gradients, and conservation. Current Biology, 27(11), 511– 527. CrossrefCASPubMedWeb of Science®Google Scholar Couper, A.-D. (1983). The Times Atlas of the Oceans. Times Books, New York. Google Scholar Courties, C., Vaquer, A., Trousselier, M. et al. (1994). Smallest eukaryotic organism. Nature, 370(6487), 255. CrossrefWeb of Science®Google Scholar Courties, C., Perasso, R., Chrétiennot-Dinet, M.-J. et al. (1998). Phylogenetic analysis and genome size of Ostreococcus tauri (Chlorophyta, Prasinophyceae). Journal of Phycology, 34, 844– 849. Wiley Online LibraryCASWeb of Science®Google Scholar Cunningham, S.-A., Kanzow, T., Rayner, D. et al. (2007). Temporal variability of the Atlantic meridional overturning circulation at 26.5 degrees N. Science, 317(5840), 935– 938. CrossrefCASPubMedWeb of Science®Google Scholar Cury, P. and Miserey, Y. (2008a). Une mer sans poissons? Calmann-LÉvy, Paris. Google Scholar Cury, P.-M., Shin, Y.-J., Planque, B. et al. (2008b). Ecosystem oceanography for global change in fisheries. Trends in Ecology and Evolution, 23, 338– 346. CrossrefPubMedWeb of Science®Google Scholar Cury, P. and Pauly, D. (2013). Mange tes méduses! Réconcilier les cycles de la vie et la flèche du temps. Odile Jacob, Paris. Google Scholar Cury, P.-M., Bertrand, A., Bertrand, S. et al. (2016). The ecosystem approach to fisheries: Reconciling conservation and exploitation. In Tools for Oceanography and Ecosystemics Modeling, A. Monaco, P. Prouzet (eds). ISTE Ltd, London and John Wiley & Sons, New York. Wiley Online LibraryGoogle Scholar Cuvelier, D., Legendre, P., Laës, A. et al. (2014). Rhythms and community dynamics of a hydrothermal tubeworm assemblage at main Endeavour field. A multidisciplinary deep-sea observatory approach. PLoS ONE, 9(5): e96924, 10.1371/journal.pone.0096924. CrossrefPubMedWeb of Science®Google Scholar Cuvelier, D., Legendre, P., Laës-Huon, A. et al. (2017). Biological and environmental rhythms in (dark) deep-sea hydrothermal ecosystems. Biogeosciences, 14, 2955– 2977. CrossrefWeb of Science®Google Scholar Damm (von), K.-L. (2001). Chemistry of hydrothermal vent fluids. In Encyclopedia of Ocean Sciences, J.-H. Steele (ed.). Academic Press, Oxford, 1246– 1253. Google Scholar Danovaro, R. (2009). Methods for the Study of the Dep-Sea Sediments, Their Functioning and Biodiversity. CRC Press, Boca Raton, FL. Google Scholar Danovaro, R., Gambi, C., Dell'Anno, A. et al. (2008). Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Current Biology, 18(1), 1– 8. CrossrefCASPubMedWeb of Science®Google Scholar Davis, R.-E., Webb, D.-C., Regier, L.-A. et al. (1992). The autonomous Lagrangian circulation explorer (ALACE). Journal of Atmospheric and Oceanic Technology, 9, 264– 285. CrossrefWeb of Science®Google Scholar Deacon, M. (2001). Vers les grandes profondeurs de l'océan: le voyage du Challenger (1872– 1876). In Sous la mer: le sixième continent, C. Buchet (ed.). Presses de l'Université Paris-Sorbonne, Paris, 165– 182. Google Scholar Defant, A. (1961). Physical Oceanography. Pergamon Press, London, 1, 729. Google Scholar Della Penna, A., De Monte, S., Kestenare, E. et al. (2015). Quasi-planktonic behavior of top marine predators. Scientific Reports, 5(18063), https://doi.org/10.1038/srep18063. PubMedWeb of Science®Google Scholar Derelle, E., Ferraz, C., Rombauts, S. et al. (2006). Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proceedings of the National Academy of Sciences of the United States of America, 103, 11647–11652. Google Scholar Diaz, R.-J. and Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926– 929. CrossrefCASPubMedWeb of Science®Google Scholar Dickson, A.-G. (1984). pH scales and proton-transfer in saline media such as sea water. Geochimica et Cosmochimica Acta, 48(11), 2299– 2308. CrossrefCASWeb of Science®Google Scholar Dickson, A.-G., Sabine, C.-L., and Christian, J.-R. (2007). Guide to best practices for ocean CO2 measurements. PICES Special Publication, 3, 1– 13. Google Scholar Dittmar, W. (1884). Report on the scientific results of the exploring voyage of H.M.S. Challenger during the years 1873–76. Physics and chemistry. Vol. 1. HMSO, London. Google Scholar Ducklow, H.-M. (1989). Joint Global Ocean Flux Study: The 1989 North Atlantic Bloom Experiment. Oceanography, 2, 4– 8. CrossrefGoogle Scholar Ducklow, H.-M. and Harris, R.-P. (1993). Introduction to the JGOFS North Atlantic bloom experiment. Deep-Sea Research Part II, 40, 1– 8. CrossrefWeb of Science®Google Scholar Dufresne, A., Salanoubat, M., Partensky, F. et al. (2003). Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proceedings of the National Academy of Sciences of the United States of America, 100, 10020–10025. Google Scholar Dugdale, R.-C. and Goering, J.-J. (1967). Uptake of new and regenerated forms of nitrogen in primary productivity. Limnology and Oceanography, 12, 196– 206. Wiley Online LibraryCASWeb of Science®Google Scholar Dugdale, R.-C., Wilkerson, F.-P., and Minas, H.-J. (1995). The role of silicate pump in driving new production. Deep-Sea Research Part I, 42(5), 697– 719. CrossrefCASWeb of Science®Google Scholar Dumas, A. (1873). Grand dictionnaire de cuisine. Alphonse Lemerre, Paris. Google Scholar Dunbar, R.-B., Arrigo, K.-R., Lutz, M. et al. (2003). Non-Redfield production and export of marine organic matter: A recurrent part of the annual cycle in the Ross Sea, Antarctica. In Biochemistry in the Ross Sea, G.-R. Dutillo, R.B. Dunbar (eds). American Geophysical Union, Washington, 179– 195. Wiley Online LibraryGoogle Scholar Dunn, D.-C., Van Dover, C.-L., Ettter, R.-J. et al. (2018). A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining. Science Advances, 4, eaar4313, 10.1126/sciadv.aar4313. Google Scholar Dutkiewicz, S., Follows, M.-J., and Bragg, J.-G. (2009). Modeling the coupling of ocean ecology and biogeochemistry. Global Biogeochemical Cycles, 23, GB4017. Wiley Online LibraryCASWeb of Science®Google Scholar Dutkiewicz, S., Scott, J.-R., and Follows, M.-J. (2013). Winners and losers: Ecological and biogeochemical changes in a warming ocean. Global Biogeochemical Cycles, 27, 463– 467. Wiley Online LibraryCASWeb of Science®Google Scholar Dutkiewicz, S., Ward, B.-A., Scott, J.-R. et al. (2014). Understanding predicted shifts in diazotroph biogeography using resource competition theory. Biogeosciences, 11, 5445– 5461. CrossrefWeb of Science®Google Scholar Dutkiewicz, S., Hickman, A.-E., Jahn, O. et al. (2015a). Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model. Biogeosciences, 12, 4447– 4481. CrossrefCASWeb of Science®Google Scholar Dutkiewicz, S., Morris, J.-J., Follows, M.-J. et al. (2015b). Impact of ocean acidification on the structure of future phytoplankton communities. Nature Climate Change, 5(11), 1002– 1006. CrossrefCASWeb of Science®Google Scholar Dybern, B.-I. (1972). Pollution in the Baltic. In Marine Pollution and Sea Life, M. Ruivo (ed.). Fishing News, London, 15– 23. Google Scholar Dyment, J., Lallier, F., Le Bris, N. et al. (2014). Les impacts environnementaux de l'exploitation des ressources minérales marines profondes. Expertise scientifique collective, CNRS-Ifremer report. Google Scholar Edgar, G.-J., Stuart-Smith, R.-D., Willis, T.-J., et al. (2014). Global conservation outcomes depend on marine protected area with five key features. Nature, 506, 216– 220. CrossrefCASPubMedWeb of Science®Google Scholar Eilola, K., Meier, H.-E.-M., and Almroth, E. (2009). On the dynamics of oxygen, phosphorus and cyanobacteria in the Baltic Sea: A model study. Journal of Marine Systems, 75, 163– 184. CrossrefWeb of Science®Google Scholar Ekman, V.-W. (1905). On the influence of the Earth's rotation on ocean-currents. Arkiv för Mathematik, Astronomi och Fysik, 2(11), 1– 52. Google Scholar Eppley, R.-W. and Peterson, B.-J. (1979). Particulate organic matter flux and planktonic new production in the deep ocean. Nature, 282, 677– 680. CrossrefWeb of Science®Google Scholar Essington, T.-E., Beaudreau, A., and Wiedenmann, J. (2006). Fishing through marine food webs. Proceedings of the National Academy of Sciences of the United States of America, 103(9), 3171– 3175. Google Scholar European Marine Board (2015). Delving deeper: Critical challenges for 21st century deep-se

Referência(s)
Altmetric
PlumX