Artigo Revisado por pares

The least degree of a CM point on a modular curve

2022; Wiley; Volume: 105; Issue: 2 Linguagem: Inglês

10.1112/jlms.12518

ISSN

1469-7750

Autores

Pete L. Clark, Tyler Genao, Paul Pollack, Frederick Saia,

Tópico(s)

Coding theory and cryptography

Resumo

Journal of the London Mathematical SocietyVolume 105, Issue 2 p. 825-883 RESEARCH ARTICLE The least degree of a CM point on a modular curve Pete L. Clark, Corresponding Author Pete L. Clark [email protected] Department of Mathematics, University of Georgia, Athens, Georgia, USA Correspondence Pete L. Clark, Department of Mathematics, University of Georgia, Athens, GA 30602. Email: [email protected]Search for more papers by this authorTyler Genao, Tyler Genao Department of Mathematics, University of Georgia, Athens, Georgia, USASearch for more papers by this authorPaul Pollack, Paul Pollack Department of Mathematics, University of Georgia, Athens, Georgia, USASearch for more papers by this authorFrederick Saia, Frederick Saia Department of Mathematics, University of Georgia, Athens, Georgia, USASearch for more papers by this author Pete L. Clark, Corresponding Author Pete L. Clark [email protected] Department of Mathematics, University of Georgia, Athens, Georgia, USA Correspondence Pete L. Clark, Department of Mathematics, University of Georgia, Athens, GA 30602. Email: [email protected]Search for more papers by this authorTyler Genao, Tyler Genao Department of Mathematics, University of Georgia, Athens, Georgia, USASearch for more papers by this authorPaul Pollack, Paul Pollack Department of Mathematics, University of Georgia, Athens, Georgia, USASearch for more papers by this authorFrederick Saia, Frederick Saia Department of Mathematics, University of Georgia, Athens, Georgia, USASearch for more papers by this author First published: 11 February 2022 https://doi.org/10.1112/jlms.12518Citations: 3Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract For a modular curve X = X 0 ( N ) $X = X_0(N)$ , X 1 ( N ) $X_1(N)$ or X 1 ( M , N ) $X_1(M,N)$ defined over Q $\mathbb {Q}$ , we denote by d CM ( X ) $d_{\operatorname{CM}}(X)$ the least degree of a CM point on X $X$ . For each discriminant Δ < 0 $\Delta < 0$ , we determine the least degree of a point on X 0 ( N ) $X_0(N)$ with CM by the order of discriminant Δ $\Delta$ . This places us in a position to study d CM ( X ) $d_{\operatorname{CM}}(X)$ as an 'arithmetic function' and we do so, obtaining various upper bounds, lower bounds and typical bounds. We deduce that all but finitely many curves in each of the families have sporadic CM points. Finally, we supplement these results with a computational study, for example, computing d CM ( X 0 ( N ) ) $d_{\operatorname{CM}}(X_0(N))$ and d CM ( X 1 ( N ) ) $d_{\operatorname{CM}}(X_1(N))$ exactly for N ⩽ 10 6 $N \leqslant 10^6$ and determining whether X 0 ( N ) $X_0(N)$ (respectively, X 1 ( N ) $X_1(N)$ , X 1 ( M , N ) $X_1(M,N)$ ) has sporadic CM points for all but 106 values of N $N$ (respectively, 227 values of N $N$ , 146 pairs ( M , N ) $(M,N)$ with M ⩾ 2 $M \geqslant 2$ ). REFERENCES 1D. Abramovich, A linear lower bound on the gonality of modular curves, Internat. Math. Res. Notices (1996), no. 20, 1005– 1011. 2D. Abramovich and J. Harris, Abelian varieties and curves in W d ( C ) $W_d(C)$ , Compos. Math. 78 (1991), 227– 238. 3W. D. Banks, F. Luca, F. Saidak, and I. E. Shparlinski, Values of arithmetical functions equal to a sum of two squares, Q. J. Math. 56 (2005), 123– 139. 4F. Bars, Bielliptic modular curves, J. Number Theory 76 (1999), 154– 165. 5A. Bourdon and P. L. Clark, Torsion points and Galois representations on CM elliptic curves, Pacific J. Math. 305 (2020), 43– 88. 6A. Bourdon and P. L. Clark, Torsion points and isogenies on CM elliptic curves, J. Lond. Math. Soc. (2) 102 (2020), 580– 622. 7A. Bourdon, P. L. Clark, and P. Pollack, Anatomy of torsion in the CM case, Math. Z. 285 (2017), 795– 820. 8A. Bourdon, P. L. Clark, and J. Stankewicz, Torsion points on CM elliptic curves over real number fields, Trans. Amer. Math. Soc. 369 (2017), 8457– 8496. 9A. Bourdon, O. Ejder, Y. Liu, F. Odumodu, and B. Viray, On the level of modular curves that give rise to sporadic j $j$ -invariants, Adv. Math. 357 (2019), 106824, 33 pp. 10A. Bourdon and P. Pollack, Torsion subgroups of CM elliptic curves over odd degree number fields, Int. Math. Res. Not. 2017, 4923– 4961. 11F. Breuer, Torsion bounds for elliptic curves and Drinfeld modules, J. Number Theory 130 (2010), 1241– 1250. 12D. A. Burgess, The distribution of quadratic residues and non-residues, Mathematika 4 (1957), 106– 112. 13M. Chou, P. L. Clark, and M. Milosevic, Acyclotomy of torsion in the CM case, Ramanujan J. 55 (2021), no. 3, 1015– 1037. 14P. L. Clark, On the Hasse principle for Shimura curves, Israel J. Math. 171 (2009), 349– 365. 15P. L. Clark, CM elliptic curves: volcanoes, reality and applications. http://alpha.math.uga.edu/~pete/Isogenies.pdf 16P. L. Clark, B. Cook, and J. Stankewicz, Torsion points on elliptic curves with complex multiplication (with an appendix by Alex Rice), Int. J. Number Theory 9 (2013), 447– 479. 17P. L. Clark, P. Corn, A. Rice, and J. Stankewicz, Computation on elliptic curves with complex multiplication, LMS J. Comput. Math. 17 (2014), no. 1, 509– 535. 18P. L. Clark, M. Milosevic, and P. Pollack, Typically bounding torsion, J. Number Theory 192 (2018), 150– 167. 19P. L. Clark and P. Pollack, The truth about torsion in the CM case, C. R. Math. Acad. Sci. Paris 353 (2015), 683– 688. 20P. L. Clark and P. Pollack, The truth about torsion in the CM case, II, Q. J. Math. 68 (2017), 1313– 1333. 21D. Cox, Primes of the form x 2 + n y 2 $x^2+ny^2$ . Fermat, class field theory and complex multiplication, John Wiley & Sons, New York, 1989. 22P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972). Lecture Notes in Mathematics, vol. 349 (Springer, Berlin, 1973), pp. 143– 316. 23M. Derickx, A. Etropolski, M. van Hoeij, J. S. Morrow, and D. Zureick-Brown, Sporadic cubic torsion, Algebra Number Theory, to appear. 24M. Derickx and M. van Hoeij, Gonality of the modular curve X 1 ( N ) $X_1(N)$ , J. Algebra 417 (2014), 52– 71. 25G. Frey, Curves with infinitely many points of fixed degree, Israel J. Math. 85 (1994), 79– 83. 26V. R. Fridlender, On the least n $n$ th-power non-residue, Dokl. Akad. Nauk SSSR 66 (1949), 351– 352. 27T. Genao and F. Saia, Least CM degree repository. https://github.com/fsaia/least-cm-degree. 28H. Halberstam and H.-E. Richert, Sieve methods, London Mathematical Society Monographs 4, Academic Press, London-New York, 1974. 29R. R. Hall and G. Tenenbaum, Divisors, Cambridge Tracts in Mathematics, vol. 90, Cambridge University Press, Cambridge, 1988. 30G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number n $n$ , Q. J. Math. 48 (1917), 76– 92. 31G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 6th ed., Oxford University Press, Oxford, 2008. 32M. Hindry and J. Silverman, Sur le nombre de points de torsion rationnels sur une courbe elliptique, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 97– 100. 33M. J. Jacobson, Jr., S. Ramachandran, and H. C. Williams, Numerical results on class groups of imaginary quadratic fields, Algorithmic number theory, Lecture Notes in Computer Science 4076 (Springer, Berlin, 2006), pp. 87– 101. 34D. Jeon and C. H. Kim, Bielliptic modular curves X 1 ( N ) $X_1(N)$ , Acta Arith. 112 (2004), 75– 86. 35D. Jeon, C. H. Kim, and E. Park, On the torsion of elliptic curves over quartic number fields, J. Lond. Math. Soc. 74 (2006), 1– 12. 36D. Jeon, C. H. Kim, and A. Schweizer, On the torsion of elliptic curves over cubic number fields, Acta Arith. 113 (2004), 291– 301. 37M. A. Kenku, On the modular curves X 0 ( 125 ) $X_0(125)$ , X 1 ( 25 ) $X_1(25)$ and X 1 ( 49 ) $X_1(49)$ , J. Lond. Math. Soc. (2) 23 (1981), 415– 427. 38H. H. Kim, Functoriality for the exterior square of G L 4 $GL_4$ and the symmetric fourth of G L 2 $GL_2$ , J. Amer. Math. Soc. 16 (2003), 139– 183 (with appendix 1 by D. Ramakrishnan and appendix 2 by H. H. Kim and P. Sarnak). 39S. Kwon, Degree of isogenies of elliptic curves with complex multiplication, J. Korean Math. Soc. 36 (1999), 945– 958. 40J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, Algebraic number fields: L $\rm L$ -functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 409– 464. 41Y. Lamzouri, X. Li, and K. Soundararajan, Conditional bounds for the least quadratic non-residue and related problems, Math. Comp. 84 (2015), 2391– 2412. 42E. Landau, Lösung des Lehmer'schen Problems, Amer. J. Math. 31 (1909), 86– 102. 43U. V. Linnik, On the least prime in an arithmetic progression. I. The basic theorem, Mat. Sbornik N.S. 15 (1944), no. 57, 139– 178. 44J. E. Littlewood, On the class number of the corpus P ( − k ) $P(\sqrt {-k})$ , Proc. Lond. Math. Soc. 27 (1928), 358– 372. 45B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129– 162 (with an appendix by D. Goldfeld). 46L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), 437– 449. 47H. L. Montgomery and R. C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97 (Cambridge University Press, Cambridge, 2007). 48K. K. Norton, A character-sum estimate and applications, Acta Arith. 85 (1998), 51– 78. 49J. L. Parish, Rational torsion in complex-multiplication elliptic curves, J. Number Theory 33 (1989), 257– 265. 50K. Prachar, Über die kleinste quadratfreie Zahl einer arithmetischen Reihe, Monatsh. Math. 62 (1958), 173– 176. 51H. Salié, Über den kleinsten positiven quadratischen Nichtrest nach einer Primzahl, Math. Nachr. 3 (1949), 7– 8. 52A. Schinzel, On pseudosquares, New Trends in Probability and Statistics, vol. 4 (Palanga, 1996), pp. 213– 220. VSP, Utrecht, 1997. 53J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259– 331. 54J.-P. Serre, Divisibilité de certaines fonctions arithmétiques, Enseignement Math. (2) 22 (1976), 227– 260. 55C. Siegel, Über die Klassenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), 83– 86. 56A. Silverberg, Torsion points on abelian varieties of CM-type, Compos. Math. 68 (1988), 241– 249. 57P. Stevenhagen, Hilbert's 12th problem, complex multiplication and Shimura reciprocity, Class field theory – its centenary and prospect (Tokyo, 1998), pp. 161– 176, Advanced Studies in Pure Mathematics, vol. 30, Math. Soc. Japan, Tokyo, 2001. 58A. V. Sutherland, Torsion subgroups of elliptic curves over number fields. Online lecture notes: https://math.mit.edu/~drew/MazursTheoremSubsequentResults.pdf 59A. V. Sutherland and D. Zywina, Modular curves of prime-power level with infinitely many rational points, Algebra Number Theory 11 (2017), 1199– 1229. 60G. Tenenbaum, A rate estimate in Billingsley's theorem for the size distribution of large prime factors, Q. J. Math. 51 (2000), 385– 403. 61L. C. Washington, Introduction to cyclotomic fields, 2nd ed. Graduate Texts in Mathematics, vol. 83, Springer, New York, 1997. 62M. Watkins, Class numbers of imaginary quadratic fields, Math. Comp. 73 (2004), 907– 938. Citing Literature Volume105, Issue2March 2022Pages 825-883 ReferencesRelatedInformation

Referência(s)