Selective CC sp Bond Cleavage: The Nitrogenation of Alkynes to Amides
2013; Wiley; Volume: 125; Issue: 30 Linguagem: Inglês
10.1002/ange.201303376
ISSN1521-3757
AutoresChong Qin, Feng Peng, Yang Ou, Tao Shen, Teng Wang, Ning Jiao,
Tópico(s)Catalytic Cross-Coupling Reactions
ResumoAngewandte ChemieVolume 125, Issue 30 p. 8004-8008 Zuschrift Selective CCsp Bond Cleavage: The Nitrogenation of Alkynes to Amides† Chong Qin, Chong Qin State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191 (China) http://sklnbd.bjmu.edu.cn/index.htmlSearch for more papers by this authorPeng Feng, Peng Feng State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191 (China) http://sklnbd.bjmu.edu.cn/index.htmlSearch for more papers by this authorYang Ou, Yang Ou State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191 (China) http://sklnbd.bjmu.edu.cn/index.htmlSearch for more papers by this authorTao Shen, Tao Shen State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191 (China) http://sklnbd.bjmu.edu.cn/index.htmlSearch for more papers by this authorTeng Wang, Teng Wang State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191 (China) http://sklnbd.bjmu.edu.cn/index.htmlSearch for more papers by this authorDr. Ning Jiao, Corresponding Author Dr. Ning Jiao [email protected] State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191 (China) http://sklnbd.bjmu.edu.cn/index.html State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032 (China)State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191 (China) http://sklnbd.bjmu.edu.cn/index.htmlSearch for more papers by this author Chong Qin, Chong Qin State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191 (China) http://sklnbd.bjmu.edu.cn/index.htmlSearch for more papers by this authorPeng Feng, Peng Feng State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191 (China) http://sklnbd.bjmu.edu.cn/index.htmlSearch for more papers by this authorYang Ou, Yang Ou State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191 (China) http://sklnbd.bjmu.edu.cn/index.htmlSearch for more papers by this authorTao Shen, Tao Shen State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191 (China) http://sklnbd.bjmu.edu.cn/index.htmlSearch for more papers by this authorTeng Wang, Teng Wang State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191 (China) http://sklnbd.bjmu.edu.cn/index.htmlSearch for more papers by this authorDr. Ning Jiao, Corresponding Author Dr. Ning Jiao [email protected] State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191 (China) http://sklnbd.bjmu.edu.cn/index.html State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032 (China)State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191 (China) http://sklnbd.bjmu.edu.cn/index.htmlSearch for more papers by this author First published: 26 June 2013 https://doi.org/10.1002/ange.201303376Citations: 27 † Financial support from the National Basic Research Program of China (973 Program) (Grant No. 2009CB825300), the National Science Foundation of China (No. 21172006), and the Ph.D. Programs Foundation of the Ministry of Education of China (No. 20120001110013) are greatly appreciated. We thank Yizhi Yuan for reproducing the results of 4 f and 4 i in Table 3. Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Durchbruch: Eine neuartige katalytische direkte hoch selektive C-Csp-Bindungsfunktionalisierung von Alkinen zur Bildung von Amiden wurde entwickelt (siehe Schema). Die Reaktion kommt ohne Oxidationsmittel aus, verläuft unter milden Bedingungen und hat ein breites Substratspektrum. Supporting Information As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Filename Description ange_201303376_sm_miscellaneous_information.pdf748.7 KB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1M. B. Smith, J. March in March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Wiley, Hoboken, NJ, 2007. Google Scholar 2For some recent reviews of CH activation, see: Google Scholar 2aD. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624; 10.1021/cr900005n CASPubMedWeb of Science®Google Scholar 2bC.-L. Sun, B.-J. Li, Z.-J. Shi, Chem. Rev. 2011, 111, 1293; 10.1021/cr100198w CASPubMedWeb of Science®Google Scholar 2cT. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147; 10.1021/cr900184e CASPubMedWeb of Science®Google Scholar 2dC. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215; 10.1021/cr100280d CASPubMedWeb of Science®Google Scholar 2eJ. Le Bras, J. Muzart, Chem. Rev. 2011, 111, 1170; 10.1021/cr100209d CASPubMedWeb of Science®Google Scholar 2fL. Ackermann, Chem. Rev. 2011, 111, 1315; 10.1021/cr100412j CASPubMedWeb of Science®Google Scholar 2gG. E. Dobereiner, R. H. Crabtree, Chem. Rev. 2010, 110, 681. 10.1021/cr900202j CASPubMedWeb of Science®Google Scholar 3For reviews on CC cleavage, see: Google Scholar 3aR. H. Crabtree, Chem. Rev. 1985, 85, 245; 10.1021/cr00068a002 CASWeb of Science®Google Scholar 3bB. Rybtchinski, D. Milstein, Angew. Chem. 1999, 111, 918; 10.1002/(SICI)1521-3757(19990401)111:7 3.0.CO;2-X Google ScholarAngew. Chem. Int. Ed. 1999, 38, 870; 10.1002/(SICI)1521-3773(19990401)38:7 3.0.CO;2-3 PubMedWeb of Science®Google Scholar 3cC.-H. Jun, Chem. Soc. Rev. 2004, 33, 610; 10.1039/B308864M CASPubMedWeb of Science®Google Scholar 3dM. Tobisu, N. Chatani, Chem. Soc. Rev. 2008, 37, 300. 10.1039/B702940N CASPubMedWeb of Science®Google Scholar 4For some reviews, see: Google Scholar 4aP. Binger, U. Schuchardt, Chem. Ber. 1981, 114, 3313; 10.1002/cber.19811141012 CASWeb of Science®Google Scholar 4bA. Brandi, A. Goti, Chem. Rev. 1998, 98, 589; 10.1021/cr940341t CASPubMedWeb of Science®Google Scholar 4cI. Nakamura, Y. Yamamoto, Adv. Synth. Catal. 2002, 344, 111; 10.1002/1615-4169(200202)344:2 3.0.CO;2-0 CASWeb of Science®Google Scholar 4dA. Brandi, S. Cicchi, F. M. Cordero, A. Goti, Chem. Rev. 2003, 103, 1213; 10.1021/cr010005u CASPubMedWeb of Science®Google Scholar 4eW. R. Dolbier, Jr., M. A. Battiste, Chem. Rev. 2003, 103, 1071; 10.1021/cr010023b CASPubMedWeb of Science®Google Scholar 4fA. Sekiguchi, V. Y. Lee, Chem. Rev. 2003, 103, 1429; 10.1021/cr0100300 CASPubMedWeb of Science®Google Scholar 4gR. Walsh, Chem. Soc. Rev. 2005, 34, 714; 10.1039/b310975p CASPubMedWeb of Science®Google Scholar 4hZ.-B. Zhu, Y. Wei, M. Shi, Chem. Soc. Rev. 2011, 40, 5534; 10.1039/c1cs15074j CASPubMedWeb of Science®Google Scholar 4iB.-L. Lu, L. Dai, M. Shi, Chem. Soc. Rev. 2012, 41, 3318. 10.1039/C2CS15295A CASPubMedWeb of Science®Google Scholar 5For selected recent examples, see: Google Scholar 5aT. Ohmura, H. Taniguchi, Y. Kondo, M. Suginome, J. Am. Chem. Soc. 2007, 129, 3518; 10.1021/ja0703170 CASPubMedWeb of Science®Google Scholar 5bT. Matsuda, M. Shigeno, M. Murakami, J. Am. Chem. Soc. 2007, 129, 12086; 10.1021/ja075141g CASPubMedWeb of Science®Google Scholar 5cC. Winter, N. Krause, Angew. Chem. 2009, 121, 2497; 10.1002/ange.200805578 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 2460; 10.1002/anie.200805578 CASPubMedWeb of Science®Google Scholar 5dT. Seiser, O. A. Roth, N. Cramer, Angew. Chem. 2009, 121, 6438; 10.1002/ange.200903189 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 6320; 10.1002/anie.200903189 CASPubMedWeb of Science®Google Scholar 5eT. Seiser, N. Cramer, J. Am. Chem. Soc. 2010, 132, 5340; 10.1021/ja101469t CASPubMedWeb of Science®Google Scholar 5fT. Seiser, N. Cramer, Chem. Eur. J. 2010, 16, 3383; 10.1002/chem.200903225 CASPubMedWeb of Science®Google Scholar 5gT. Wang, C.-H. Wang, J. Zhang, Chem. Commun. 2011, 47, 5578; 10.1039/C0CC05650B CASPubMedWeb of Science®Google Scholar 5hL. Zhou, F. Ye, Y. Zhang, J. Wang, Org. Lett. 2012, 14, 922; 10.1021/ol2034405 CASPubMedWeb of Science®Google Scholar 5iB.-L. Lu, M. Shi, Angew. Chem. 2011, 123, 12233; 10.1002/ange.201105292 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 12027. 10.1002/anie.201105292 CASPubMedWeb of Science®Google Scholar 6 6aC.-H. Jun, H. Lee, J. Am. Chem. Soc. 1999, 121, 880; 10.1021/ja983197s CASWeb of Science®Google Scholar 6bN. Chatani, Y. Ie, F. Kakiuchi, S. Murai, J. Am. Chem. Soc. 1999, 121, 8645; 10.1021/ja992048m CASWeb of Science®Google Scholar 6cC.-H. Jun, D.-Y. Lee, H. Lee, J.-B. Hong, Angew. Chem. 2000, 112, 3214; 10.1002/1521-3757(20000901)112:17 3.0.CO;2-T Google ScholarAngew. Chem. Int. Ed. 2000, 39, 3070; 10.1002/1521-3773(20000901)39:17 3.0.CO;2-G CASPubMedWeb of Science®Google Scholar 6dC.-H. Jun, C. W. Moon, D.-Y. Lee, Chem. Eur. J. 2002, 8, 2422; 10.1002/1521-3765(20020603)8:11 3.0.CO;2-B CASPubMedWeb of Science®Google Scholar 6eY. J. Park, J.-W. Park, C.-H. Jun, Acc. Chem. Res. 2008, 41, 222; 10.1021/ar700133y CASPubMedWeb of Science®Google Scholar 6fH. Li, Y. Li, X.-S. Zhang, K. Chen, X. Wang, Z.-J. Shi, J. Am. Chem. Soc. 2011, 133, 15244; 10.1021/ja205228y CASPubMedWeb of Science®Google Scholar 6gZ.-Q. Lei, H. Li, Y. Li, X.-S. Zhang, K. Chen, X. Wang, J. Sun, Z.-J. Shi, Angew. Chem. 2012, 124, 2744; 10.1002/ange.201107136 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 2690; 10.1002/anie.201107136 CASPubMedWeb of Science®Google Scholar 6hJ. Wang, B. Liu, H. Zhao, J. Wang, Organometallics 2012, 31, 8598; 10.1021/om300994j CASWeb of Science®Google Scholar 6iJ. Wang, W. Chen, S. Zuo, L. Liu, X. Zhang, J. Wang, Angew. Chem. 2012, 124, 12500; 10.1002/ange.201206693 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 12334; 10.1002/anie.201206693 CASPubMedWeb of Science®Google Scholar 6jJ. P. Lutz, C. M. Rathbun, S. M. Stevenson, B. M. Powell, T. S. Boman, C. E. Baxter, J. M. Zona, J. B. Johnson, J. Am. Chem. Soc. 2012, 134, 715. 10.1021/ja210307s CASPubMedWeb of Science®Google Scholar 7 7aM. Tobisu, Y. Kita, N. Chatani, J. Am. Chem. Soc. 2006, 128, 8152; 10.1021/ja062745w CASPubMedWeb of Science®Google Scholar 7bY. Nakao, A. Yada, S. Ebata, T. Hiyama, J. Am. Chem. Soc. 2007, 129, 2428; 10.1021/ja067364x CASPubMedWeb of Science®Google Scholar 7cF. L. Taw, A. H. Mueller, R. G. Bergman, M. Brookhart, J. Am. Chem. Soc. 2003, 125, 9808; 10.1021/ja034468o CASPubMedWeb of Science®Google Scholar 7dM. Tobisu, R. Nakamura, Y. Kita, N. Chatani, J. Am. Chem. Soc. 2009, 131, 3174; 10.1021/ja810142v CASPubMedWeb of Science®Google Scholar 7eD.-G. Yu, M. Yu, B.-T. Guan, B.-J. Li, Y. Zheng, Z.-H. Wu, Z.-J. Shi, Org. Lett. 2009, 11, 3374; 10.1021/ol901217m CASPubMedWeb of Science®Google Scholar 7fM. R. Grochowski, T. Li, W. W. Brennessel, W. D. Jones, J. Am. Chem. Soc. 2010, 132, 12412; 10.1021/ja104158h CASPubMedWeb of Science®Google Scholar 7gK. Nakai, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2011, 133, 11066; 10.1021/ja203829j CASPubMedWeb of Science®Google Scholar 7hM. R. Grochowski, J. Morris, W. W. Brennessel, W. D. Jones, Organometallics 2011, 30, 5604; 10.1021/om200342f CASWeb of Science®Google Scholar 7iM. Tobisu, H. Kinuta, Y. Kita, E. Remond, N. Chatani, J. Am. Chem. Soc. 2012, 134, 115. 10.1021/ja2095975 CASPubMedWeb of Science®Google Scholar 8For recent reviews on amide synthesis, see: Google Scholar 8aE. Valeur, M. Bradley, Chem. Soc. Rev. 2009, 38, 606; 10.1039/B701677H CASPubMedWeb of Science®Google Scholar 8bC. L. Allen, J. M. J. Williams, Chem. Soc. Rev. 2011, 40, 3405; 10.1039/c0cs00196a CASPubMedWeb of Science®Google Scholar 8cA. J. A. Watson, J. M. J. Williams, Science 2010, 329, 635; 10.1126/science.1191843 CASPubMedWeb of Science®Google Scholar 8dK. Ekoue-Kovi, C. Wolf, Chem. Eur. J. 2008, 14, 6302. 10.1002/chem.200800353 CASPubMedWeb of Science®Google Scholar 9For some selected recent examples on the reaction of azide compounds, see: Google Scholar 9aY.-F. Wang, K. K. Toh, J.-Y. Lee, S. Chiba, Angew. Chem. 2011, 123, 6049; 10.1002/ange.201101009 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 5927; 10.1002/anie.201101009 CASPubMedWeb of Science®Google Scholar 9bY.-F. Wang, K. K. Toh, E. P. J. Ng, S. Chiba, J. Am. Chem. Soc. 2011, 133, 6411; 10.1021/ja200879w CASPubMedWeb of Science®Google Scholar 9cB. J. Stokes, S. Liu, T. G. Driver, J. Am. Chem. Soc. 2011, 133, 4702; 10.1021/ja111060q CASPubMedWeb of Science®Google Scholar 9dQ. Nguyen, K. Sun, T. G. Driver, J. Am. Chem. Soc. 2012, 134, 7262; 10.1021/ja301519q CASPubMedWeb of Science®Google Scholar 9eJ. Y. Kim, S. H. Park, J. Ryu, S. H. Cho, S. H. Kim, S. Chang, J. Am. Chem. Soc. 2012, 134, 9110; 10.1021/ja303527m CASPubMedWeb of Science®Google Scholar 9fJ. Ryu, K. Shin, S. H. Park, J. Y. Kim, S. Chang, Angew. Chem. 2012, 124, 10042; 10.1002/ange.201205723 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 9904; 10.1002/anie.201205723 CASPubMedWeb of Science®Google Scholar 9gZ.-Y. Yan, Y. Xiao, L. Zhang, Angew. Chem. 2012, 124, 8752; 10.1002/ange.201203678 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 8624; 10.1002/anie.201203678 CASPubMedWeb of Science®Google Scholar 9hB. Lu, Y. Luo, L. Liu, L. Ye, Y. Wang, L. Zhang, Angew. Chem. 2011, 123, 8508; 10.1002/ange.201103014 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 8358; 10.1002/anie.201103014 CASPubMedWeb of Science®Google Scholar 9iH. Lu, H. Jiang, L. Wojtas, X. P. Zhang, Angew. Chem. 2010, 122, 10390; 10.1002/ange.201005552 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 10192; 10.1002/anie.201005552 CASPubMedWeb of Science®Google Scholar 9jW. Yao, L. Pan, Y. Zhang, G. Wang, X. Wang, C. Ma, Angew. Chem. 2010, 122, 9396; 10.1002/ange.201004685 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 9210; 10.1002/anie.201004685 CASPubMedWeb of Science®Google Scholar 9kK. Weidner, A. Giroult, P. Panchaud, P. Renaud, J. Am. Chem. Soc. 2010, 132, 17511; 10.1021/ja1068036 CASPubMedWeb of Science®Google Scholar 9lI. Cano, E. Álvarez, M. C. Nicasio, P. J. Peréz, J. Am. Chem. Soc. 2011, 133, 191; 10.1021/ja109732s CASPubMedWeb of Science®Google Scholar 9mS. Zhang, J. Zhao, W.-X. Zhang, Z. Xi, Org. Lett. 2011, 13, 1626; 10.1021/ol200038n CASPubMedWeb of Science®Google Scholar 9nJ. Wang, J. Wang, Y. Zhu, P. Lu, Y. Wang, Chem. Commun. 2011, 47, 3275; 10.1039/c0cc04922k CASPubMedWeb of Science®Google Scholar 9oZ. Chen, C. Ye, L. Gao, J. Wu, Chem. Commun. 2011, 47, 5623; 10.1039/c1cc11176k CASPubMedWeb of Science®Google Scholar 9pC. Qin, W. Zhou, F. Chen, Y. Ou, N. Jiao, Angew. Chem. 2011, 123, 12803; 10.1002/ange.201106112 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 12595; 10.1002/anie.201106112 CASPubMedWeb of Science®Google Scholar 9qT. Bach, B. Schlummer, K. Harms, Chem. Commun. 2000, 287; 10.1039/a909009f CASWeb of Science®Google Scholar 9rT. Miura, T. Biyajima, T. Fujii, M. Murakami, J. Am. Chem. Soc. 2012, 134, 194; 10.1021/ja2104203 CASPubMedWeb of Science®Google Scholar 9sC. Qin, N. Jiao, J. Am. Chem. Soc. 2010, 132, 15893; 10.1021/ja1070202 CASPubMedWeb of Science®Google Scholar 9tC. Tang, N. Jiao, J. Am. Chem. Soc. 2012, 134, 18924; 10.1021/ja3089907 CASPubMedWeb of Science®Google Scholar 9uT. Wang, W. Zhou, H. Yin, J.-A. Ma, N. Jiao, Angew. Chem. 2012, 124, 10981; 10.1002/ange.201205779 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 10823; 10.1002/anie.201205779 CASPubMedWeb of Science®Google Scholar 9vD. Lubriks, I. Sokolovs, E. Suna, J. Am. Chem. Soc. 2012, 134, 15436; 10.1021/ja305574k CASPubMedWeb of Science®Google Scholar 9wT. Miura, Y. Funakoshi, M. Morimoto, T. Biyajima, M. Murakami, J. Am. Chem. Soc. 2012, 134, 17440; 10.1021/ja308285r CASPubMedWeb of Science®Google Scholar 9xM. Zibinsky, V. V. Fokin, Angew. Chem. 2013, 125, 1547; 10.1002/ange.201206388 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 1507; 10.1002/anie.201206388 CASPubMedWeb of Science®Google Scholar 9yD. J. Gorin, N. R. Davis, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 11260; 10.1021/ja053804t CASPubMedWeb of Science®Google Scholar 9zK. Hiroya, S. Matsumoto, M. Ashikawa, K. Ogiwara, T. Sakamoto, Org. Lett. 2006, 8, 5349. 10.1021/ol062249c CASPubMedWeb of Science®Google Scholar 10 10aX. Jin, T. Oishi, K. Yamaguchi, N. Mizuno, Chem. Eur. J. 2011, 17, 1261; 10.1002/chem.201002761 CASPubMedWeb of Science®Google Scholar 10bS. Gaillard, J. Bosson, R. S. Ramón, P. Nun, A. M. Z. Slawin, S. P. Nolan, Chem. Eur. J. 2010, 16, 13729; 10.1002/chem.201001688 CASPubMedWeb of Science®Google Scholar 10cA. Leyva, A. Leyva, J. Org. Chem. 2009, 74, 2067. 10.1021/jo802558e CASPubMedWeb of Science®Google Scholar 11 11aK. F. Z. Schmidt, Angew. Chem. 1923, 36, 511; Google Scholar 11bS. Lang, J. A. Murphy, Chem. Soc. Rev. 2006, 35, 146. 10.1039/B505080D CASPubMedWeb of Science®Google Scholar 12For reviews on gold-catalyzed activation of alkynes, see: Google Scholar 12aS. Ma, S. Yu, Z. Gu, Angew. Chem. 2006, 118, 206; 10.1002/ange.200502999 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 200; 10.1002/anie.200502999 CASWeb of Science®Google Scholar 12bA. S. K. Hashmi, Chem. Rev. 2007, 107, 3180; 10.1021/cr000436x CASPubMedWeb of Science®Google Scholar 12cN. Marion, S. P. Nolan, Chem. Soc. Rev. 2008, 37, 1776; 10.1039/b711132k CASPubMedWeb of Science®Google Scholar 12dE. Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326; 10.1021/cr0684319 CASPubMedWeb of Science®Google Scholar 12eM. N. Hopkinson, A. D. Gee, V. Gouverneur, Chem. Eur. J. 2011, 17, 8248; 10.1002/chem.201100736 CASPubMedWeb of Science®Google Scholar 12fH. A. Wegner, M. Auzias, Angew. Chem. 2011, 123, 8386; 10.1002/ange.201101603 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 8236; 10.1002/anie.201101603 CASPubMedWeb of Science®Google Scholar 12gY. Yamamoto, I. D. Gridnev, N. T. Patil, T. Jin, Chem. Commun. 2009, 5075; 10.1039/b909978f CASPubMedWeb of Science®Google Scholar 12hE. Jiménez-Núñez, A. M. Echavarren, Chem. Commun. 2007, 333; 10.1039/B612008C CASPubMedWeb of Science®Google Scholar 12iD. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351. 10.1021/cr068430g CASPubMedWeb of Science®Google Scholar 13For some selected examples, see: Google Scholar 13aH.-S. Yeom, J.-E. Lee, S. Shin, Angew. Chem. 2008, 120, 7148; 10.1002/ange.200802802 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 7040; 10.1002/anie.200802802 CASPubMedWeb of Science®Google Scholar 13bP. W. Davies, S. J.-C. Albrecht, Angew. Chem. 2009, 121, 8522; 10.1002/ange.200904309 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 8372; 10.1002/anie.200904309 CASPubMedWeb of Science®Google Scholar 13cN. D. Shapiro, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 4160; 10.1021/ja070789e CASPubMedWeb of Science®Google Scholar 13dA. M. Jadhav, S. Bhunia, H.-Y. Liao, R.-S. Liu, J. Am. Chem. Soc. 2011, 133, 1769; 10.1021/ja110514s CASPubMedWeb of Science®Google Scholar 13eY. Wang, K. Ji, S. Lan, L. Zhang, Angew. Chem. 2012, 124, 1951; 10.1002/ange.201107561 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 1915; 10.1002/anie.201107561 CASPubMedWeb of Science®Google Scholar 13fY. Luo, K. Ji, Y. Li, L. Zhang, J. Am. Chem. Soc. 2012, 134, 17412; 10.1021/ja307948m CASPubMedWeb of Science®Google Scholar 13gD. Qian, J. Zhang, Chem. Commun. 2012, 48, 7082; 10.1039/c2cc31972a CASPubMedWeb of Science®Google Scholar 13hM. Zhang, J. Zhang, Chem. Commun. 2012, 48, 6399; 10.1039/c2cc32510a CASWeb of Science®Google Scholar 13iD. Wang, X. Ye, X. Shi, Org. Lett. 2010, 12, 2088; 10.1021/ol100576m CASPubMedWeb of Science®Google Scholar 13jD. Wang, R. Cai, S. Sharma, J. Jirak, S. K. Thummanapelli, N. G. Akhmedov, H. Zhang, X. Liu, J. L. Petersen, X. Shi, J. Am. Chem. Soc. 2012, 134, 9012. 10.1021/ja303862z CASPubMedWeb of Science®Google Scholar 14D. V. Partyka, J. B. Updegraff III, M. Zeller, A. D. Hunter, T. G. Gray, Organometallics 2007, 26, 183. 10.1021/om0607200 CASWeb of Science®Google Scholar 15 15aR. D. Bach, G. J. Wolber, J. Org. Chem. 1982, 47, 239; 10.1021/jo00341a012 CASWeb of Science®Google Scholar 15bA. Hassner, E. S. Ferdinandi, R. J. Isbister, J. Am. Chem. Soc. 1970, 92, 1672. 10.1021/ja00709a042 CASWeb of Science®Google Scholar 16M. Beller, J. Seayad, A. Tillack, H. Jiao, Angew. Chem. 2004, 116, 3448; 10.1002/ange.200300616 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 3368. 10.1002/anie.200300616 CASPubMedWeb of Science®Google Scholar Citing Literature Volume125, Issue30July 22, 2013Pages 8004-8008 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation
Referência(s)