References
2014; American Geophysical Union; Linguagem: Inglês
10.1002/9781118962220.bref
ISSN2771-6929
AutoresBoris Faybishenko, Thomas Nicholson, В.М. Шестопалов, Alexander Bohuslavsky, Volodymir Bublias,
Tópico(s)Landslides and related hazards
ResumoFree Access References Book Editor(s):Boris Faybishenko, Boris FaybishenkoSearch for more papers by this authorThomas Nicholson, Thomas NicholsonSearch for more papers by this authorVyacheslav Shestopalov, Vyacheslav ShestopalovSearch for more papers by this authorAlexander Bohuslavsky, Alexander BohuslavskySearch for more papers by this authorVolodymir Bublias, Volodymir BubliasSearch for more papers by this author First published: 10 October 2014 https://doi.org/10.1002/9781118962220.brefBook Series:Special Publications AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Albinet, M., and J. Margat (1970), Cartographie de la vulnerabilité à la pollution des nappes d'eau souterraine, Bull. BRGM 2nd Ser., 3(4), 13– 22. Aller, L., T., Bennet J. H., Lehr R. J, Petty and G. Hackett (1987), DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeologic settings, EPA/600/2-87-036, U.S. Environmental Protection Agency, Ada, Washington, D.C. Andersen, L. J., and E. Gosk (1987), Applicability of vulnerability maps, paper presented at the Intl. Conf. Vulnerability of Soil and Groundwater to Pollutants, RIVM Proc. and Inf., 38, 321– 332. Baker, R. S., and D. Hillel (1990), Laboratory tests of a theory of fingering during infiltration into layered soils, Soil Sci. Soc. Am. J., 54, 20– 30. Ball, D., A. MacDonald, B. Dochartaigh, M. del Rio, V. Fitzsimons, C. Auton, and A. Lilly. (2004), Development of a groundwater vulnerability screening methodology for the Water Framework Directive, Final report, Project WFD28, SNIFFER, www.sepa.org.uk/pdf/groundwater/tools/vulnerability_rgeport.pdf. Baryakhtar, V. G., V. I., Kholosha and D. M. Grodzinsky (Eds.) (1997), Chernobyl Catastrophe. National Academy of Sciences of Ukraine, Ukrainian Ministry for the Population Protection from Chernobyl NPP Accident Consequences, Ministry of Health, Editorial House of Annual Issue “Export of Ukraine”, Kyiv (In Russian). Bear, J. (1972), Dynamics of Fluids in Porous Media, American Elsevier, New York. Belousova, A. P. (2001), Groundwater Quality: Present Approaches to the Assessment, Nauka, Moscow, (in Russian). Belousova, A. P. (2005), Groundwater Resources and Their Security from Contamination in the River Dnieper Basin and Its Separate Regions: Territory of Russia, URSS, Moscow. (in Russian). Belousova, A. P., and Galaktionova O. V. (1994), On the methodology of assessing natural groundwater security from radioactive contamination, J. Water Resources, Moscow, 21(3), 340– 345 (in Russian). Beven, K., and P. Germann (1982), Macropores and water flow in soils, Water Resources Res., 18(5), 1311– 1325. Bochever, F. M., and A. E. Oradovskaya (1972), Hydrogeological Fundamentals of Groundwater Protection from Contaminants, Nedra, Moscow (in Russian). Borzilov, V. A. (1989), Physical-mathematical modeling of processes determining runoff of long-lived radionuclides from watersheds in 30-km zone of Chernobyl NPP, J. Meteorol. and Hydrol., 1, 5– 13 (in Russian). Bouma, J. (1981), Soil morphology and preferential flow along macropores, Agric. Water Manag., 3, 235– 250. Burkart, M. R., D. W., Kolpin and D. E. James (1999), Assessing groundwater vulnerability to agrichemical contamination in the Midwest US, Water Sci. and Technol., 39(3), 103– 112. Carter, A. D., R. C. Palmer, and R. A. Monkhouse (1987), Mapping the vulnerability of groundwater to pollution from agricultural practice, particularly with respect to nitrate, Atti Int. Conf.Vulnerab. of Soil and Groundwater to Pollutants, RIVM Proc. and Inf., 38, 333– 342. Ciang, W. H., and W. Kinzelbach (2001), 3D Groundwater Modeling with PMWin, Springer-Verlag Berlin Heidelberg. Civita, M. (2008), The Italian “combined” approach in assessing and mapping the vulnerability of groundwater to contamination, in Zlatko Mikulič; Mišo Andjelov. Proceedings of Invited Lectures of Symposium on Groundwater Flow and Transport Modelling, Ljubljana, Sovenia, 28–31 January 2008, MOP - Agencija RS za okolje, Ljubljana, pp. 17– 28. Civita, M., and M. De Maio (2004), Assessing and mapping groundwater vulnerability to contamination: The Italian “combined” approach, Geofís. Int., 43(4), 513– 532. Daly, D., A. Dassargues, D. Drew, S. Dunne, N. Goldscheider, S. Neale, I. C. Popescu, and F. Zwahlen (2002), Main concepts of the European approach for (karst) groundwater vulnerability assessment and mapping, Hydrogeol J., 10, 340– 345. Deecke, W. (1906), Einige Beobachtungen am Sandstrande, Centralbl. fuer Mineral. Geol. Und Palaeont., Stuttgart. pp. 721– 727. Denny, S. C., D. M., Allen and J. M. Journeay (2007), DRASTIC-Fm: A modified vulnerability mapping method for structurally controlled aquifers in the southern Gulf Islands, British Columbia, Canada, Hydrogeol. J., 15(3), 483– 493. Doerfliger, N., P.-Y. Jeannin, and F. Zwahlehn (1999), Water vulnerability assessment in karst environments: A new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method), Environ. Geol., 39(2), 165– 176. Engel, B., K. Navulur, B. Cooper, and L. Hahn (1996), Estimating groundwater vulnerability to nonpoint source pollution from nitrates and pesticides on a regional scale, HydroGIS96: Application of Geographic Information Systems in Hydrology and Water Resources Management (Proceedings of the Vienna Conference, April, 1996), IAHS Publ. 235. Engelen, G. B. (1985), Vulnerability and restoration aspects of groundwater systems in unconsolidated terrains in the Netherlands, Atti 18 Cong. I.A.H., pp. 64– 69. Evans, T. A., and D. R. Maidment (1995), A spatial and statistical assessment of the vulnerability of Texas groundwater to nitrate contamination, Center for Research in Water Resources, Bureau of Eng. Res., Univ. of Texas at Austin, J. J. Pickle Res. Campus, Austin, http://civil.ce.utexas.edu/centers/crwr/reports/online.html. Faybishenko, B., C., Doughty M., Steiger J. C. S., Long T. R., Wood J. S., Jacobsen J. Lore, and P. T. Zawislanski (2000), Conceptual model of the geometry and physics of water flow in a fractured basalt vadose zone, Water Resources Res., 36(12), 3499– 3520. B. Faybishenko, P. A. Witherspoon, and J. Gale (Eds.) (2005), Dynamics of Fluids and Transport in Fractured Rock, Geophysical Monograph Ser. 162, Am. Geophys. Union, Washington D.C. Fetter C. W. (2000), Applied Hydrogeology, Prentice Hall, Englewood Cliffs, N.J. Foster, S. S. D. (1987), Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy, Atti Int. Conf.Vulnerab. of Soil and Groundw. to Pollutants, RIVM Proc. and Inf. 38, pp. 69– 86. Foster, S. S. D., and R. Hirata (1988), Groundwater pollution risk assessment: A methodology using available data, Pan Amer. Cent. for Sanit. Engin. and Envir. Scienc. (CEPIS), Lima. Freeze, R. A., and J. A. Cherry (1979), Groundwater, Prentice-Hall, Englewood Cliffs, N.J. Fried, J. (1975), Groundwater Pollution, Elsevier, Amsterdam, New York. Gees, R. A., and A. K. Lyall (1969), Erosion sand columns in dune sand, Cape Sable Island, Nova Scotia, Canada, Can. J. Earth Sci., 6, 344– 347. Gerke, H. H., P. Germann, and J. Nieber (2010), Preferential and unstable flow: From the pore to the catchment scale, Vadose Zone J., No 9, pp. 207– 212. Gladkiy, A. V., I. I. Lyashko, and G. E. Mistetskiy (1981), Algorithmization and Numeric Calculation of Filtration Schemes, Vyscha Shkola, Kiev (in Russian). Glass, R. J., T. S. Steenhuis, and J.-Y. Parlange (1989), Mechanism for finger persistence in homogeneous, unsaturated, porous media: Theory and verification, Soil Sci., 148, 60– 70. Gogu, R. C., and A. Dassargues (2000), Current trends and future challenges in groundwater vulnerability assessment using overly and index methods, Environ. Geol., 39(6), 549– 559. Goldberg, V. M. (1983), Natural and technogenic factors of groundwater protectability. Moscow Soc. of Nature Investigators Bull. No. 2, pp. 103– 110 (in Russian). Goldberg, V. M. (1987), Interrelation of Groundwater Contamination and Natural Environment, Gidrometeoizdat, Leningrad (in Russian). Goldscheider, N. (2005), Karst groundwater vulnerability mapping: Application of a new method in the Swabian Alb, Germany, Hydrogeol. J., 13(4), 555– 564. Goman, A. V. (2005), Complex approach to hydrogeological protectability of subsurface geosphere of Astrakhan gas-condensate deposit. In: Proceedings of the International Conference “Fundamental Problems of Oil-Gas Hydrogeology” devoted to 80th Jubilee of Prof. A. A. Kartsev, Moscow, Institute of Oil and Gas Problems, Russian Academy of Sciences, 25–27 October 2005 (in Russian). Goman, A. V. (2007), Hydrogeochemical protectability of atom-hydro-lithosphere in conditions of oil-gas fields recovery, Problems of geology and minerals production, in Proceedings of All-Russia Scientific Conference, 22–24 October 2007, pp. 260– 262, Tomsk Polytech. Univ. Tomsk, Russia. (in Russian). Greenland, D. J. (1977), Soil drainage by intensive arable cultivation: Temporary or permanent? Phil. Trans. Roy. Soc. (Lond.), B281, 193– 208. Gripp, K. (1961), Ueber Werden und Vergehen von Barchanen an der Nordsee-Kueste Schleswig-Holsteins, Zeitsch. fuer Geomorphologie, Neue Folge, Bd. 5:24–36, Berlin, Germany. Groundwater Resources of Southern Wisconsin (2002), Southeastern Wisconsin Regional Planning Commission, Wisconsin Geol. and Natural History Surv., Wisconsin Dept. of Natural Resources, Tech. Rept. 37, June 2002, www.sewrpc.org/publications/techrep/tr-037_groundwater_resources.pdf. Grove, D. B., and K. G. Stollenwerk (1984), Computer model of one-dimensional equilibrium-controlled sorption processes, Water-Resources Investigations Rept. 84-4059, U.S. Geol. Surv., Reston, VA. Gurdak, J. J., M. A. Walvoord, and P. B. McMahon (2008), Susceptibility to enhanced chemical migration from depression-focused preferential flow, High Plains aquifer, Vadose Zone J., 7(4), 1172– 1184. Haustov, A. P. (2007), Stability of Subsurface Hydrosphere and Foundations of Ecological Regulation, GEOS, Moscow (in Russian). Heath, R. C. (1984), Ground-water regions of the United States, Water-Supply Paper 2242, U.S. Geol. Surv., Reston, VA. Helling, C. S., and T. J. Gish (1991), Physical and chemical processes affecting preferential flow, in Preferential Flow. Proceedings of the National Symposium, 16–17 December, 1991, Chicago, Ill, edited by N. J. Gish and A. Shirmohammadi. Am. Soc. of Agric. Eng. Chicago, Ill. Hill, S. (1952), Channeling in packed columns, Chem. Eng. Sci., 1, 247– 253. Hillel, D., and R. S. Baker (1988), A descriptive theory of fingering during infiltration into layered soils, Soil Sci., 146, 51– 56. Hoelting, B., T., Haertle K. H., Hohberger K. H., Nachtigall E., Villinger W., Weinzierl J. P. Wrobel (1995), Konzept zur Ermittlung der Schutzfunktion der Grundwasser ueberdeckung, Geol Jahrb, C 63, 5– 24. Josopait, V., and B. Schwerdtfeger (1979), Geowissenschaftliche Karte des Naturraumpotentials von Niedersachsen und Bremen, CC 3110 Bremerhaven Grundwasser, 1:200000, Niedersachsischen Landesamt fur Bodenforshung, Hanover. Jury, W. A., and K. Roth (1990), Transfer Functions and Solute Movement through Soil: Theory and Applications, Birkhaeuser Verlag. Kholosha, V. I., N. I. Proskura, Yu. A. Ivanov, S. V. Kazakov, and A. M. Arkhipov (1999), Radiation and ecological significance of natural and technogenic objects of the exclusion zone, Bull. Ecol. State of the Exclusion Zone and Zone of Mandatory Depopulation, No. 13, 1999, Chernobyl. Kraynov, S. R., and V. M. Schvets (1987), Geochemistry of Groundwater Used for Potable and Industrial Needs, Nedra, Moscow (in Russian). Kraynov, S. R., B. N. Ryzhenko, and V. M. Schvets (2004), Groundwater Geochemistry: Theoretical, Applied, and Ecological Aspects, Nauka, Moscow (in Russian). Kung, K-J. S. (1990), Preferential flow in a sandy vadose zone. 1. Field observation. 2. Mechanism and implications, Geoderma, 46, 51– 71. J. R. Landon (Ed.) (1984), Booker Tropical Soil Manual, Booker Agric. Int. Ltd., London. Lawes, J. B., J. H. Gilbert, and R. Warington (1882), On the amount and composition of the rain and drainage water collected at Rothamsted, Williams Clowes and Sons, London. Originally published in J. Royal Agr. Soc. England, 17(1881), 241– 279, 311–350; 18(1882), 1–71. Ligget, J. E., and S. Talwar (2009), Groundwater vulnerability and integrated water resource management, Streamline Watershed Management Bull., 13(1), 18– 29. Lissey, A. (1971), Depression-focused transient groundwater flow patterns in Manitoba, Special Paper 9:333–341, Geological Association of Canada. Loague, K., and D. Corwin (1998), Regional-scale assessment of non-point source groundwater contamination, Hydrol. Process., 12, 957– 965. Loague, K., R. H., Abrams, S. N., Davis, A., Nguyen, and I. T. Stewart (1998), A case study simulation of DBCP groundwater contamination in Fresno County, California: 2. Transport in the saturated subsurface, J. Contaminant Hydrol., 29, 137– 163. Lukner, L., and V. M. Shestakov (1986), Modeling Groundwater Migration, Nedra, Moscow (in Russian). Magiera, P. (2000), Methoden zur Abschaetzung der Verschmutzungsempfindlichkeit des Grundwassers, Grundwasser, 3, 103– 114. Maloszevski, P., and A. Zuber (1996), Lumped parameter models for the interpretation of environmental tracer data, IAEA TEC DOC – 910, Manual on mathematical models in isotope hydrogeology, Vienna, pp. 9– 58. Marcolongo, B., and L. Pretto (1987), Vulnerabilita degli acquiferi nella pianura a nord di Vicenza, Pubbl. GNDCI-CNR n. 28, Ed. Grafiche Erredieci, Padova. Margane, A., M. Hobler, and A. Sabah (1999), Mapping of groundwater vulnerability and hazards to groundwater in the Ibrid area in N. Jordan, Z. Angew. Geol., 45, 4. Margat, J. (1968), Vulnerabilite des nappes d'eau souterraine a la pollution, BRGMPublication 68 SGL 198 HYD, Orleans McCoy, J. (2004), ArcGIS 9, Geoprocessing in ArcGIS, ESRI, Redlands, CA. McDonald, M. C., and A. W. Harbaugh (1988), MODFLOW, A modular three-dimensional finite difference ground-water flow model, Open-file report 83–875, Chapter A1, U. S. Geol. Surv., Reston, VA. Mickhevich, G. S. (2011), Geoecological assessment of groundwater natural vulnerability to contamination (on the example of the upper inter-moraine aquifer system in Kaliningrad Oblast), Abstract of Candidate of Science Thesis, Kaliningrad, www.kantiana.ru/postgraduate/announce/avt_mihneviy.doc (in Russian). Mironenko, V. A., and V. G. Rumynin (1990), Assessment of protective properties of aeration zone (as applied to groundwater contamination), J. Eng. Geol., No 2, pp. 3– 18 (in Russian). Mironenko, V. A., and V. G. Rumynin (1999), Problems of Hydrogeoecology. vol. 3, State Univ. of Mining, Moscow (in Russian). Mironenko, V. A., E. V. Molskiy, and V. G. Rumynin (1988), Studying Groundwater Contamination in Mining Regions, Nedra, Leningrad (in Russian). National Research Council (NRC) (1993a), National Academy Press Report, Ground Water Vulnerability Assessment. Contamination Potential Under Conditions of Uncertainty, Committee on Techniques for Assessing Ground Water Vulnerability Water Science and Technology Board, Commission on Geosciences, Environment, and Resources, Nat. Res. Council, Natl. Acad. Press, Washington, D.C. National Research Council (NRC) (1993b), Ground Water Vulnerability Assessment: Contamination Potential Under Conditions of Uncertainty, Natl. Acad. Press, Washington DC, http://www.nap.edu/catalog/2050.html. National Research Council (NRC) (2004), Groundwater Fluxes Across Interfaces. Natl. Acad. Press, Washington, D.C., http://www.nap.edu/catalog/10891.htm. Nieber, J. L. (1996), Modeling finger development and persistence in initially dry porous media, Geoderma, 70, 209– 229. Nieber, J. L. (2001), The relation of preferential flow to water quality, and its theoretical and experimental quantification, in Preferential Flow: Water Management and Chemical Transport in the Environment, Proceedings of the 2nd International Symposium, 3–5 January 2001, Honolulu, Hawaii, USA, Eds. D.D. Bosch and K.W. King, pp. 1– 9, Am. Soc. of Agric. Eng. St. Joseph, Michigan. Nieber, J. L., C. A. S. Tosomeen, and B. N. Wilson (1993), Stochastic-mechanistic model of depression-focused recharge, in Y. Eckstein and A. Zaporozec (Eds.), Hydrologic Investigation, Evaluation, and Ground Water Modeling, Proceedings of Industrial and Agricultural Impacts on the Hydrologic Environment, The Second USA/CIS Joint Conference on Environmental Hydrology and Hydrogeology, Water Environment Federation, Washington D.C. pp. 207– 234. Olmer, M., and B. Rezac (1974), Methodical principles of maps for protection of ground water in Bohemia and Moravia scale 1:200000, Mem. I.A.H. 10, 1, pp. 105– 107. Ostry, R. C., R. E. J., Leech A. J. Cooper, and E. H. Rannie (1987), Assessing the susceptibility of ground water supplies to non-point source agricultural contamination in South Ontario, Atti Int. Conf.Vulnerab. of Soil and Groundw. to Pollutants, RIWM Atti and Inf. 38, pp. 437– 445. Palmer, R. C. (1988), Groundwater vulnerability Map Severn Trent Water, Soil Survey and Land Res. Cent. 8 p. 7 Carte. Palmquist, R., and L. V. A. Sendlein (1975), The configuration of contamination enclaves from refuse disposal sites on floodplains, GroundWater , 13(2), 167– 181. Parlange, J.-Y., T. S. Steenhuis, R. J. Glass, T. L. Richards, N. B. Pickering, W. J. Waltman, N. O. Bailey, M. S. Andreini, and J. A. Throop (1988), The flow of pesticides through preferential paths in soils, New York's Food & Life Sci. Quarterly, 18(1, 2), 20– 23 (Cornell University, Ithaca, N.Y.). Pashkovskiy, I. S. (2002), Principles of assessing groundwater security from contamination, J. Present problems of hydrogeology and hydromechanics, Saint-Petersburg Univ., pp. 122– 131 (in Russian). Perelman, A. I. (1961), Geochemistry of Landscape, Geographgiz, Moscow (in Russian). Phillip, J. R. (1975), Stability analysis of infiltration, Soil Sci. Soc. Amer. Proc., 39, 1042– 1049. Pityeva, K. E. (1999), Hydrogeological Studies in Regions of Oil and Gas Deposits, Nedra Moscow (in Russian). Pityeva, K. E., A. V. Goman, and A. O. Serebryakov (2006), Groundwater geochemistry in oil-gas deposits development, Astrakhan Univ., Astrakhan (in Russian). Polubarinova-Kochina, P. Ya. (1977), Theory of Groundwater Movement, Science, Moscow (in Russian). Polyakov, V. A., and E. V. Golubkova (2007), Assessment of groundwater security using data of isotope hydrogeochemical research, J. Earth's Interiors Prospecting and Protection, No 5, pp. 48– 52. Moscow. (in Russian). Prazak, J., M. Sir, F. Kubik, J. Tywoniak, and C. Zarcone (1992), Oscillation phenomena in gravity-driven drainage in coarse porous media, Water Resour. Res., 28, 1849– 1855. Raats, P. A. C. (1973), Unstable wetting fronts in uniform and nonuniform soils, Soil Sci. Soc. Amer. Proc. 37, 681– 685. Rogachevskaya, L. M. (2002), Regional assessment of groundwater vulnerability of the Eastern part of Dnieper Artesian Basin to radionuclide contamination, Candidate of Geological Sciences’ Thesis, Inst. of Water Problems, Moscow (in Russian). Rogovskaya, N. V. (1976), Map of natural groundwater protectability from pollution. J. Nature, No 3, pp. 57– 76. Moscow. (in Russian). Rosen, L. (1994), A study of the DRASTIC methodology with emphasis on Swedish conditions, Ground Water, 32, 278– 285. Rudenko, Yu. F., V. M., Shestopalov A. S. Boguslavsky, and B. D. Stetsenko (1997), Groundwater use management based on permanent action models, Proceedings of the XXVII IAH Congress on Groundwater in the Urban Environment, Nottingham, UK, 21–27 September, 1997, vol. 1, Problems, Processes and Management, Ed.: J. Chilton. pp. 653– 658, Balkema, Rotterdam Brookfield. Rumynin V. G. (Ed.) (2003), Assessment of the influence of a nuclear industry complex on groundwater and related natural objects (town Sosnovy Bor, Leningrad region), Saint-Petersburg Univ. (in Russian). Rundquist, D. C., A. I. Peters, L. Di, D. A. Rodekohr, R. L. Ehrman, and G. Murray, (1991), Statewide groundwater-vulnerability assessment in Nebraska using the DRASTIC/GIS model, Geocarto Int. 2, 51– 58. Schmidt, R. R. (1987), Groundwater contamination susceptibility in Wisconsin, Wisc. Groundw. Manag. Plan Rep. 5, 27 p. J. L. Schnoor (Ed.) (1992), Fate of Pesticides and Chemicals in the Environment, Wiley, New York. Shestakov, V. M. (2003), Accouting for geological heterogeneity: A key problem of hydrogeodynamics, J. Tribune of Moscow Univ., 4(1) 25– 27 (in Russian). Shestopalov, V. M. (1979), Groundwater Natural Resouces Formation in Platform Structures of Ukraine, Naukova Dumka, Kiev (in Russian). Shestopalov, V. M. (1981), Natural Groundwater Resources of Platform Artesian Basins of Ukraine, Naukova Dumka, Kiev (in Russian). V. M. Shestopalov (Ed.) (1988), Water Exchange in Hydrogeological Structures of Ukraine: Methods of Water Exchange Study, Naukova Dumka, Kiev (in Russian). Shestopalov, V. M. (Ed.) (2001), Water exchange in hydrogeological structures of Ukraine: Water exchange in hydrogeological structures and Chernobyl disaster, Inst. of Geol. Sci., Radio-Environmental Center, Kyiv, Parts 1, 2 (in Russian). V. M. Shestopalov (Ed.) (2002), Chernobyl Disaster and Groundwater, Balkema, Lisse, Abingdon/Exton(Pa), Tokyo. Shestopalov, V. M. (Ed.) (2003), Assessment of natural groundwater protectability from contaminants for Ukrainian area of Dnieper basin, Report on Research contract No BYE/00/001-01, October 28. Radio-Environmental Center NAS of Ukraine, Kyiv (in Russian). Shestopalov, V. M., V. V. Gudzenko, Y. F. Rudenko, and A. S. Boguslavskij (1992), Combined Analysis, Modelling and Forecast of Longterm Underground Water Contamination Inside the Chernobyl Fallout Influenced Zone, Hydrological Impact of Nuclear Power Plant Systems, International Hydrological Programme, UNESCO Chernobyl Programme, Paris. Shestopalov, V. M., A. S. Bohuslavsky, V. N. Bublias, V. V. Goudzenko, I. P. Onyschenko, and Yu. F. Rudenko (1996), Studying migration of Chernobyl-born radionuclides in groundwater used for drinking water supply of Kyiv city, J. Chem. technol. water, Kyiv, 18(2), 120– 127 (in Russian). Shestopalov, V. M., V. V. Goudzenko, Yu. F. Rudenko, V. N. Bublias, and A. S. Boguslavsky (1997), Assessment and forecast of groundwater and rock contamination within the Kyiv industrial agglomeration influenced by Chernobyl fallout, in Proceedings of the XXVII IAH Congress on Groundwater in the Urban Environment. Nottingham, UK, 21–27 September 1997, vol. 1, Problems, Processes and Management, Ed.: J. Chilton. pp. 171– 174, Balkema, Rotterdam, Brookfield. Shestopalov, V. M., and V. N. Bublias (2000), Zones of intensive migration of radionuclides into geological environment of Chernobyl Exclusion Zone, Bull. of Ecol. State Exclusion Zone and Zone of Mandatory Depopulation, No 16, September 2000, “Chernobylinform” Agency, pp. 9– 12, Kyiv. Shestopalov, V. M., S. T., Zvolskiy V. M. Bublias, and V. V. Kulik (2002), Determination of infiltration characteristics in rocks of aeration zone by chlorine indicator, J. Repts. Acad. Sci. Ukraine, No 9, pp. 130– 136, Kyiv. (in Ukrainian). Shestopalov, V. M., Yu. F., Rudenko A. S. Bohuslavsky, and V. N. Bublias (2006), Chernobyl-born radionuclides: Aquifers protectability with respect to preferential flow zones, in Applied Hydrogeophysics, edited by H. Vereecken, pp. 341– 376, Springer, Netherlands. Shestopalov, V. M., A. B., Klimchuk S. V. Tokarev, and G. N. Amelichev (2009), Groundwater vulnerability assessment of regions of open karst (on example of the Ai-Petri massif, Crimea), Speleol. Carstol., 2009( 2), 11– 29 (in Russian). Shuford, J. W., D. D. Fritton, and D. E. Baker (1977), Nitrate nitrogen and chloride movement through undisturbed field soil, J. Env. Qual. 6, 255– 259. Sililo, O. T. N., J. E. Conrad, T. E. Doehse, G. Tredoux, and M. H. du Plessis (2001), A procedure for deriving qualitative contaminant attenuation maps from land type data, J. Hydrol., 241, 104– 109. Singh, P., and R. S. Kanwar (1991), Preferential solute transport through macropores in large undisturbed saturated columns, J. Environ. Qual., 20, 295– 300. Sinreich, M., F. Cornation, and F. Zwahlen (2007), Evaluation of reactive transport parameters to assess specific vulnerability in karst systems, in Groundwater Vulnerability Assessment and Mapping. Selected Papers from the Groundwater Vulnerability Assessment and Mapping International Conference, Ustron, Poland, 2004, edited by A. J. Witkowski et al., pp. 38– 48, Taylor & Francis/Balkema, Netherlands. Sotornikova, R., and J. Vrba (1987), Some remarks on the concept of vulnerability maps, Atti Int. Conf.Vulnerab. of Soil and Groundw. to Pollutants, RIVM Proc. and Inf. 38, pp. 471– 475. Tovar, M., and R. Rodriguez (2004), Vulnerability assessment of aquifers in an urban-rural environment and territorial ordering in Leon, Mexico, Geofis. Int., 43(4), 603– 609. Van Genuchten, M. Th. (1980), A close-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892– 898. Van Stempvoort, D., L. Ewert, and L. Wassenaar (1995), A method for groundwater protection mapping in the Praire Province of Canada, PPWB Report 114, Nat. Hydrogeol. Res. Inst., Saskatoon, Saskatchevan, Canada. Villumsen, A., O. S. Jacobsen, and C. Sonderskov (1983), Mapping the vulnerability of ground water reservoirs with regard to surface pollution, Danm. Geol. Unders. Arbog 1982, pp. 17– 38, 2 Tavole. Vlaicu, M., and C-M. Munteanu (2008), Karst groundwaters vulnerablity assessment methods, Trav. Inst. Speol. “Emile Rakovitza,” t. XLVII, pp. 107– 118, Bucarest, www.speotravaux.iser.ro/08/art06.pdf. Vogel, T., R. Zhang, M. Th. van Genuchten, and K. Huang (1995), HYDRUS, one-dimensional variably saturated flow and transport model, including hysteresis and root water uptake, Version 3.4, Res. Rept., U.S. Salinity Lab., USDA-ARS, Riverside, CA. Von Hoyer, M., and B. Söfner (1998), Groundwater vulnerability mapping in carbonate (karst) areas of Germany, BGR Hannover, Archive Nr. 117 854, unpubl. report for EC-project COST Action 620. Vrana, M. (1968), Ochrana prostyc podzemnich vod v Cechach a na Morava.Vysvetlivsky k mape 1:500000, Wat. Res. Plan Cent., Praha (in Ceco). Vrana, M. (1984), Methodology for construction of groundwater protection maps, Lecture for UNESCO/UNEP Proj. PLCE3/29, Moscow, September 1981, in Hydrogeological Principles of Groundwater Protection, vol. 1, E. A. Kazlovsky Edit. and Chief, pp. 147– 149. UNESCO/UNEP, Moscow. J. Vrba, and A. Zaporozec (Eds.) (1994), Guidebook on Mapping Groundwater Vulnerability: International Contributions to Hydrogeology, vol. 16. Int. Assoc. of Hydrogeol., Heise, Hanover. Vsevolzhskiy, V. A. (1983), Underground Runoff and Water Balance of Platform Structures, Nedra, Moscow (in Russian). A. Zaporozec (Ed.) (1985), Groundwater Protection Principles and Alternatives for Rock County, Wisconsin, Wisconsin Geological and Natural History Survey, Special Report 8, WI SR 8. A. Zaporozec (Ed.) (2002), Groundwater Contamination Inventory, IHP-VI, Series on groundwater No. 2, UNESCO, Paris. Zektser I. S. (2001), Groundwater as a Component of Environment. Nauchny Mir, Moscow (in Russian). Zektser, I. S. (2007), Groundwater of the World: Resources, Use, Forecasts, Nauka, Moscow (in Russian). Zektser, I. S., O. A. Karimova, G. Buguoli, and M. Bucci (2004), Regional assessment of fresh groundwater vulnerability: Methodological aspects and practical application, J. Water Resources, 31(6), 645– 650 (in Russian). Zhang, R., J. D. Hamerlinck, S. P. Gloss, and L. Munn (1996), Determination of nonpoint-source pollution using GIS and numerical models, J. Environ. Quality, 25(3), 411– 418. Zheng, C. (1990), MT3D. A modular three-dimensional transport model for simulation of advection, dispersion and chemical reaction of contaminants in groundwater systems, S.S. Papadopulos & Assoc., Rockville, Md., prepared for the U.S. EPA Robert S. Kerr Environmental Research Laboratory, Ada, Okla., 17, October 1990. Zhou, H., Guoli, W., and Qing, Y. (1999), A multi-objective fuzzy pattern recognition model for assessing groundwater vulnerability based on the DRASTIC system, Special Issue: Barriers to Sustainable Management of Water Quantity and Quality, J. Hydrol. Sci., 44(4), 611– 618. Zhou, J., G., Li F., Liu Y. Wang, and X. Guo (2010), DRAV model and its application in assessing groundwater vulnerability in arid area: A case study of pore phreatic water in Tarim Basin, Xinjiang, Northwest China, Environ. Earth Sci., 60(5), 1055– 1063. Zwahlen, F. (Ed.) (2004), Vulnerability and risk mapping for the protection of carbonate (karst) aquifers, final report COST Action 620, European Commission, Directorate-General for Research, EUR 20912, Luxemburg. Groundwater Vulnerability: Chernobyl Nuclear Disaster ReferencesRelatedInformation
Referência(s)