Artigo Revisado por pares

CUTANEOUS SCARS: PART I

1994; Wiley; Volume: 33; Issue: 10 Linguagem: Catalão

10.1111/j.1365-4362.1994.tb01511.x

ISSN

1365-4632

Autores

William J. Sahl, Henry Clever,

Tópico(s)

Cutaneous lymphoproliferative disorders research

Resumo

International Journal of DermatologyVolume 33, Issue 10 p. 681-691 CUTANEOUS SCARS: PART I WILLIAM J. SAHL JR. M.D., Corresponding Author WILLIAM J. SAHL JR. M.D. Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.Address for correspondence: William J. Sahl Jr., M.D., 717 Meade Street, Rapid City, SD 57701-5333.Search for more papers by this authorHENRY CLEVER M.D., HENRY CLEVER M.D. Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.Search for more papers by this author WILLIAM J. SAHL JR. M.D., Corresponding Author WILLIAM J. SAHL JR. M.D. Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.Address for correspondence: William J. Sahl Jr., M.D., 717 Meade Street, Rapid City, SD 57701-5333.Search for more papers by this authorHENRY CLEVER M.D., HENRY CLEVER M.D. Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.Search for more papers by this author First published: October 1994 https://doi.org/10.1111/j.1365-4362.1994.tb01511.xCitations: 32AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Clark RAF. Cutaneous tissue repair: basic biological considerations. J Am Acad Dermatol 1985; 13: 701–725. 10.1016/S0190-9622(85)70213-7 CASPubMedWeb of Science®Google Scholar 2 Montgomery DW. Cicatrix. Urol Cutan Rev 1939; 43: 403–06. Google Scholar 3 Clark RAF. Wound repair. Curr Opin Cell Biol 1989; 1: 1008. 10.1016/0955-0674(89)90072-0 Web of Science®Google Scholar 4 Langdon RC. In: W Sams, PJ Lynch, eds. Principles and practice of dermatology. New York : Churchill Living stone, 1990: 69–76. Google Scholar 5 Simpson DM, Ross R. The neutrophilic leukocyte in wound repair. A study in anti-neutrophil serum. J Clin Invest 1972; 51: 2009–2023. 10.1172/JCI107007 CASPubMedWeb of Science®Google Scholar 6 Clark RAF. Role of macrophages in wound healing. Surg Forum 1976; 17: 16. Web of Science®Google Scholar 7 Robert AB, Flanders KC, Kondaiah P, et al. Transforming growth factor beta: biochemistry and roles in embryogenesis, tissue repair and remodeling and carcinogenesis. Horm Res 1988; 44: 157–197. Google Scholar 8 Rodland KD, Muldoon LL, Magnum BE. Cellular mechanisms of TGF — 6 action. J Invest Dermatol 1990; 94(Suppl 6): 335–405. Google Scholar 9 Senior RM, Griffin GL, Mecham RP. Chemotactic activity of elastic-derived peptides. J Clin Invest 1980; 66: 859–862. 10.1172/JCI109926 CASPubMedWeb of Science®Google Scholar 10 Postlethwaite AE, Kang AH. Collagen and collagen peptide induced chemotaxis of human monocytes. Exp Med 1976; 142: 1299–1307. 10.1084/jem.143.6.1299 CASWeb of Science®Google Scholar 11 Norris DA, Clark RAF, Swigart LM, et al. Fibronectin fragments are chemotactic for peripheral blood mono cytes. J Immunol 1982; 129: 1612–1618. CASPubMedWeb of Science®Google Scholar 12 Shimokado K, Raines EW, Madtes DK, et al. A significant part of macrophage-derived growth factor consists of at least two forms of PDG-F. Science 1985; 43: 177–186. Google Scholar 13 Shirren GG, Scharffeter K, Hein R, et al. Tumor necrosis factor alpha induces invasiveness of human skin fibroblasts in vitro. J Invest Dermatol 1990; 94: 706–710. 10.1111/1523-1747.ep12876280 CASPubMedWeb of Science®Google Scholar 14 Madfes DK, Raines EW, Sakariassen KS, et al. Induction of transforming growth factor alpha in activated human alveolar macrophages. Cell 1988; 53: 285–293. 10.1016/0092-8674(88)90390-X CASPubMedWeb of Science®Google Scholar 15 Nanney LB. Epidermal and dermal effects of epidermal growth factor during wound repair. J Invest Dermatol 1990; 94: 624–629. 10.1111/1523-1747.ep12876204 CASPubMedWeb of Science®Google Scholar 16 Winter G. Epidermal regeneration studied in the domes tic pig. In: HI Maibach, DT Robee, eds. Epidermal wound healing. Chicago : Year Book, 1972: 71. Web of Science®Google Scholar 17 Barrandon Y, Green H. Cell migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor-alpha and epidermal growth factor. Cell 1987; 50: 1121–1137. 10.1016/0092-8674(87)90179-6 CASWeb of Science®Google Scholar 18 Krane JF, Murphy DP, Carter DM, et al. Synergistic effects of epidermal growth factor and insulin-like growth factor I/somatomedine on keratinocyte proliferation may be mediated by IGF-I transmodulation of the EGF receptor oven. J Invest Dermatol 1991; 96: 419–424. 10.1111/1523-1747.ep12469799 CASPubMedWeb of Science®Google Scholar 19 Shipley GD, Keeble WW, Hendrickson JE, et al. Growth of normal human keratinocytes and fibroblasts in serum- free medium is stimulated by acid and basic fibroblast growth factor. J Cell Physiol 1989; 138: 511–518. 10.1002/jcp.1041380310 CASPubMedWeb of Science®Google Scholar 20 Stanely RJ, Alvarez OM. Detection of basement membrane zone antigens during epidermal wound healing in pigs. J Invest Dermatol 1981; 77: 140–143. Google Scholar 21 Ruoslahti E. Fibronectin and its receptors. Ann Rev Biochem 1988; 57: 375–413. 10.1146/annurev.bi.57.070188.002111 CASPubMedWeb of Science®Google Scholar 22 Stenn KS, Madri JA, Roll FJ. Migrating epidermis produces AB2 collagen and requires continual collagen synthesis for movement. Nature 1979; 277: 229–233. 10.1038/277229a0 CASPubMedWeb of Science®Google Scholar 23 Briggaman RA. Biochemical composition of the epidermal-dermal junction and other basement membranes. J Invest Dermatol 1982; 78: 1–6. 10.1111/1523-1747.ep12497841 CASPubMedWeb of Science®Google Scholar 24 Grimwood RE, Baskin JB, Nielsen LD, et al. Fibronectin extracellular matrix assembly by human epidermal cells implanted into athymic mice. J Invest Dermatol 1988; 90: 434–440. 10.1111/1523-1747.ep12460874 CASPubMedWeb of Science®Google Scholar 25 Postlethwaite AE, Seyer JM, Kang AH. Chemotactic at traction of human fibroblasts to type I, II, and III collagen and collagen-derived peptides. Proc Natl Acad Sci USA 1978; 75: 871–875. 10.1073/pnas.75.2.871 CASPubMedWeb of Science®Google Scholar 26 Postlethwaite AE, Keski-Oja J, Balian G, et al. Induction of fibroblast chemotaxis by fibronectin: localization of the chemotactic region to an 140,000 molecular weight nongelatin binding fragment. J Exp Med 1980; 153: 494–499. 10.1084/jem.153.2.494 CASPubMedWeb of Science®Google Scholar 27 Seppa H, Grotendorst GR, Seppa S, et al. The plateletderived growth factor is chemotactic for fibroblasts. J Cell Biol 1982; 92: 584–588. 10.1083/jcb.92.2.584 PubMedWeb of Science®Google Scholar 28 Mensing H, Gzarnetzki BM. Leukotriene B4 induces in vitro fibroblast chemotaxis. J Invest Dermatol 1984; 82: 9–12. 10.1111/1523-1747.ep12258678 CASPubMedWeb of Science®Google Scholar 29 Schirren CG, Scharffeter K, Hain R, et al. Tumor necrosis factor alpha induces invasiveness of human skin fibroblasts in vitro. J Invest Dermatol 1990; 94: 706–710. 10.1111/1523-1747.ep12876280 CASPubMedWeb of Science®Google Scholar 30 Hsieh P, Chen B. Behavior of cells seeded in isolated fibronectin matrices. J Cell Biol 1983; 96: 1208–1217. 10.1083/jcb.96.5.1208 CASPubMedWeb of Science®Google Scholar 31 Mackie EJ, Halfter W, Liverani D. Induction of tenascin in healing wounds. J Cell Biol 1988; 107: 2757–2767. 10.1083/jcb.107.6.2757 CASPubMedWeb of Science®Google Scholar 32 Clark RAF. Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin. J Invest Dermatol 1990; 94(Suppl 6): 1284–1345. Google Scholar 33 Roberts AB, Flanders KC, Kondiah P, et al. Transforming growth factor beta: biochemistry and roles in embryogenesis, tissue repair and remodeling, and carcinogenesis. Re cent Prog Horm Res 1988; 44: 157–177. CASPubMedWeb of Science®Google Scholar 34 Moshere DF, Vaheri A. Thrombin stimulates the production and release of a major surface-associated glycoprotein (fibronectin) in cultures of human fibroblasts. Exp Cell Res 1978; 112: 323–334. 10.1016/0014-4827(78)90215-X CASPubMedWeb of Science®Google Scholar 35 Duncan M, Berman B. Stimulation of collagen and glycosaminoglycan production in cultured human adult dermal fibroblasts by recombinant human interleukin 6. J Invest Dermatol 1991; 97: 686–692. 10.1111/1523-1747.ep12483971 CASPubMedWeb of Science®Google Scholar 36 Toole BP. Glycosaminoglycans in morphogenesis. In: EB Hay, ed. Cell biology of extracellular matrix. New York : Plenum Press, 1981: 259. 10.1007/978-1-4613-0881-2_10 Google Scholar 37 Bently JP. Rate of condroitin sulfate formation in wound healing. Ann Surg 1977; 165: 186–191. PubMedWeb of Science®Google Scholar 38 Clark RAF. Cutaneous tissue repair: basic biologic con siderations. J Am Acad Dermatol 1985; 13: 701–725. 10.1016/S0190-9622(85)70213-7 CASPubMedWeb of Science®Google Scholar 39 Horsburgh CR, Clark RAF, Kirkpatrick CH. Lymphokines and platelets promote human monocyte adherence to fibrinogen and fibronectin in vitro. J Leukoc Biol 1987; 41: 14–24. 10.1002/jlb.41.1.14 CASPubMedWeb of Science®Google Scholar 40 Grinnel F, Feld MK. Initial adhesion of human fibro blasts in serumfree medium: possible role of secreted fibronectin. Cell 1979; 17: 117–129. 10.1016/0092-8674(79)90300-3 CASPubMedWeb of Science®Google Scholar 41 Clark RAF, Folkvord JM, Wertz RL. Fibronectin, as well as other extracellular matrix proteins, mediates human keratinocyte adherence. J Invest Dermatol 1985; 84: 378–383. 10.1111/1523-1747.ep12265466 CASPubMedWeb of Science®Google Scholar 42 McDonald JA, Kelley DG, Broekelmann TJ. Role of fibronectin in collagen deposition: the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibrotic extracellular matrix. J Cell Biol 1982; 92: 485–492. 10.1083/jcb.92.2.485 CASPubMedWeb of Science®Google Scholar 43 Hynes RO. Integrins: a family of cell surface receptors. Cell 1987; 48: 549–554. 10.1016/0092-8674(87)90233-9 CASPubMedWeb of Science®Google Scholar 44 Uitto J, Perejda AJ, Abergel RP, et al. Altered steadystate ratio of type I/III procollagen in RBAs correlates with selectively increased type I procollagen biosynthesis in cultured keloid fibroblasts. Proc Natl Acad Sci USA 1985; 82: 5935–5939. 10.1073/pnas.82.17.5935 CASPubMedWeb of Science®Google Scholar 45 Scharffetter K, Kulozik M, Stolz W, et al. Localization of collagen alpha — 1 (I) gene expression during wound healing by in situ hybridization. J Invest Dermatol 1989; 93: 405–412. CASPubMedWeb of Science®Google Scholar 46 Granstein RD, Flotte TJ, Amento EP. Interferons and collagen production. J Invest Dermatol 1990; 95 (Suppl 6): 75s–80s. 10.1111/1523-1747.ep12874789 CASPubMedWeb of Science®Google Scholar 47 Schaffetter K, Heckman M, Hatamochi A, et al. Synersgistic effect of tumor necrosis factor-alpha and interferon gamma in collagen synthesis of human skin fibroblasts in vitro. Exp Cell Res 1989; 191: 409–19. 10.1016/0014-4827(89)90098-0 CASWeb of Science®Google Scholar 48 Weinberg CB, Bell EJ. Regulation of proliferation of bovine aortic endothelial cells, smooth muscle cells and adventitial fibroblasts in collagen lattices. Cell Physiol 1985; 122: 410–414. 10.1002/jcp.1041220311 CASPubMedWeb of Science®Google Scholar 49 Folkman J, Klagsburn M. Angiogenic factors. Science 1987; 124: 422–27. Google Scholar 50 Mignatti P. In vitro angiogenesis on the human amniotic membrane: requirement for basic fibroblast growth factor-induced proteinases. J Cell Biol 1989; 108: 671. 10.1083/jcb.108.2.671 CASPubMedWeb of Science®Google Scholar 51 Sato N, Nariuchi H, Tsuruoka N, et al. Actions of TNF and IFN-g on angiogenesis in vitro. J Invest Dermatol 1990; 95(Suppl 6): 85s–89s. 10.1111/1523-1747.ep12874809 CASPubMedWeb of Science®Google Scholar 52 Clark RAF, Folkvord JM, Nielsen LD. Either exogenous or endogenous fibronectin can promote adherence of human endothelial cells. J Cell Sci 1986; 82: 263–280. CASPubMedWeb of Science®Google Scholar 53 James WD, Odom RB. Late subcutaneous fibrosis following megavoltage radiotherapy. J Am Acad Dermatol 1980; 3: 616–680. 10.1016/S0190-9622(80)80076-4 CASPubMedWeb of Science®Google Scholar 54 Madri JA, Pratt BM, Tucker AM. Phenotypic modulation of endothelial cells by transforming growth factor-p depends upon the composition and organization of the extracellular matrix. J Cell Biol 1988; 156: 1375–1384. 10.1083/jcb.106.4.1375 CASWeb of Science®Google Scholar 55 Zitelli J. Wound healing for the clinician. Adv Dermatol 1989; 2: 243–267. Google Scholar 56 Clark RAF. Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin. J Invest Dermatol 1990; 94(Suppl 6): 1285–1345. Google Scholar 57 Collier IE, Wilhelm SM, Eisenn AZ. H-ras oncogenetransforming human bronchial epithelial (TBE-1) secrete a single metalloprotease capable of degrading basement collagen. J Biol Chem 1988; 263: 6579–6587. CASPubMedWeb of Science®Google Scholar 58 Saus JJ, Quinones S, Otani Y, et al. The complete primary structure of human matrix metalloproteinase — 3: Identity with stromalysin. J Biol Chem 1988; 263: 6742–6745. CASPubMedWeb of Science®Google Scholar 59 Bertolami CN, Donoff RB. Identification, characterization and partial purification of mammalian skin wound hyaluronidase. J Invest Dermatol 1982; 79: 417–421. 10.1111/1523-1747.ep12530400 CASPubMedWeb of Science®Google Scholar 60 Grant GA, Eisen AZ, Marmer BL. The activation of human skin procollagenase. Sequence identification of major conversion products. J Biol Chem 1987; 262: 5886–5889. CASPubMedWeb of Science®Google Scholar 61 Quinter MI, Mollar EJ, Rosomondo EF. Proteoglycan modifications by granulation tissue in culture. Exp Cell Biol 1982; 50: 222–228. PubMedWeb of Science®Google Scholar 62 Trelstad RL, Silver FH. Matrix assembly. In: EB Hay, ed. Cell biology of extracellular matrix. New York : Plenum Press, 1981: 179. 10.1007/978-1-4613-0881-2_8 Google Scholar 63 Donoff RB, McLennan JE, Grillo HC. Preparation and properties of collagenases from epithelium and mesenchyme of healing mammalian wounds. Biochim Biophys Acta 1971; 227: 639–653. 10.1016/0005-2744(71)90014-3 CASPubMedWeb of Science®Google Scholar 64 Kischer CW, Shetlar MR. Collagen and mucopolysaccharides in the hypertrophic scar. Connect Tissue Res 1974; 2: 205–213. 10.3109/03008207409152245 CASPubMedWeb of Science®Google Scholar 65 Levenson SM, Geever EG, Crawley LV, et al. The healing of rat skin wounds. Ann Surg 1965; 161: 293–308. 10.1097/00000658-196502000-00019 CASPubMedWeb of Science®Google Scholar 66 Jimenez SA, Freundlich B, Rosenbloom J. Selective inhibition of human diploid fibroblast collagen synthesis by interferons. J Clin Invest 1984; 74: 1112–1116. 10.1172/JCI111480 CASPubMedWeb of Science®Google Scholar 67 Granstein RD, Flotte TJ, Amento EP. Interferons and collagen production. J Invest Dermatol 1990; 95(Suppl): 755–805. Google Scholar 68 Castellot JJ, Addonizio ML, Rosenberg R, et al. Vascular endothelial cells produce a smooth muscle growth. J Cell Biol 1981; 90: 372–379. 10.1083/jcb.90.2.372 CASPubMedWeb of Science®Google Scholar 69 Mancini RE, Quaife JV. Histogenesis of experimentally produced keloids. J Invest Dermatol 1962; 38: 142–181. 10.1038/jid.1962.29 Google Scholar 70 Linares HA, Larson DL. Early differential diagnosis between hypertrophic and nonhypertrophic healing. J In vest Dermatol 1974; 62: 514–516. 10.1111/1523-1747.ep12681048 CASPubMedWeb of Science®Google Scholar 71 Peacock EE, Madden JW, Trier WC. Biologic basis for treatment of keloids and hypertrophic scars. South Med J 1979; 63: 755. 10.1097/00007611-197007000-00002 PubMedWeb of Science®Google Scholar 72 Alibert JLM. Description des maladies de la peau observées à l'hospital Saint-Lauest et exposition des meilleures methodes suivées pour leur traitement. Paris : Barrois L'Ainé et Fils 1806: 113. Google Scholar 73 Rockwell WB, Cohen IK, Erlich HP. Keloids and hypertrophic scars. A comprehensive review. Plast Reconstr Surg 1989; 84: 827–837. 10.1097/00006534-198911000-00021 CASPubMedWeb of Science®Google Scholar 74 Griffith BH, Monroe CW, McKinney P. A follow-up study on the treatment of keloids with triamcinolone acetonide. Plast Reconstr Surg 1974; 1: 179. Google Scholar 75 Cosman B, Crikelair GE, Ju DM, et al. The surgical treatment of keloids. Plast Reconstr Surg 1961; 27: 335. 10.1097/00006534-196104000-00001 Web of Science®Google Scholar 76 Alhady SM, Sivanantharja K. Keloids in various races: a review of 175 cases. Plast Reconstr Surg 1969; 44: 564–566. 10.1097/00006534-196912000-00006 CASPubMedWeb of Science®Google Scholar 77 Moustafa MF, Abdel-Eattah MA, Abdel-Fattah DC. Presumptive evidence of the effects of pregnancy estrogens on keloid growth. Plast Reconstr Surg 1975; 56: 450–53. 10.1097/00006534-197510000-00019 PubMedWeb of Science®Google Scholar 78 Oluwasanmi JO. Keloids in the African. Clin Plast Surg 1974; 1: 179–195. 10.1016/S0094-1298(20)32271-9 CASPubMedGoogle Scholar 79 Ketchum LD, Cohen IK, Masters FW. Hypertrophic scars and keloids: a collective review. Plast Reconstr Surg 1974; 53: 140–154. 10.1097/00006534-197402000-00004 CASPubMedWeb of Science®Google Scholar 80 Ramakrishnan K, Thomas KP, Sundavarajan P. Study of 1000 patients with keloids in South India. Plast Reconstr Surg 1974; 53: 276–280. 10.1097/00006534-197403000-00004 PubMedWeb of Science®Google Scholar 81 Kischer CW. Comparative ultrastructure of hypertrophic scars and keloids. Scanning Microsc 1984; 1: 423. Google Scholar 82 Knapp TR, Daniels JR, Kaplan EN. Pathologic scar formation. Am J Pathol 1977; 86: 47. CASPubMedWeb of Science®Google Scholar 83 Lever WF, Schaumburg-Lever B. Histopathology of the skin. Philadelphia : JB Lippincott, 1990. Google Scholar 84 Ketchum LD, Cohen IK, Masters EW. Hypertrophic scars and keloids: a collective review. Plast Reconstr Surg 1974; 53: 140. 10.1097/00006534-197402000-00004 CASPubMedWeb of Science®Google Scholar 85 Kischer CW, Wagner HN, Pindur J, et al. Increased fibronectin production by cell lines from hypertrophic scar and keloid. Connect Tissue Res 1989; 23: 279–288. 10.3109/03008208909005627 PubMedWeb of Science®Google Scholar 86 Kurkinen M, Vaheri A, Roberts PJ, et al. Sequential appearance of fibronectin and collagen in experimental granulation tissue. J Lab Invest 1980; 43: 47–51. CASPubMedWeb of Science®Google Scholar 87 Kischer CW, Hendrix MJ. Fibronectin in hypertrophic scars and keloids. Cell Tissue Res 1983; 231: 29–37. CASPubMedWeb of Science®Google Scholar 88 Craig RDP, Schofield JD, Jackson DS. Collagen biosyn thesis in normal and hypertrophic scars and keloids: a function of the duration of the scar. Br J Surg 1975; 62: 741–744. 10.1002/bjs.1800620917 PubMedWeb of Science®Google Scholar 89 Abergel RP, Pizzurro D, Meeker CA, et al. Biochemical composition of the connective tissue in keloids and analysis of collagen metabolism in keloid fibroblast cultures. J Invest Dermatol 1985; 84: 384. 10.1111/1523-1747.ep12265471 CASPubMedWeb of Science®Google Scholar 90 Utto J, Perejda AJ, Abergel R, et al. Altered steady-state ratio of type I/III procollagen mRNAs correlates with selectively increased type I procollagen biosynthesis in cultured keloid fibroblasts. Proc Natl Acad Sci U S A 1985; 82: 5935–5939. 10.1073/pnas.82.17.5935 CASPubMedWeb of Science®Google Scholar 91 Harris ED, Sjoerdsma A. Collagen profile in various clinical conditions. Lancet 1966; 2: 707. 10.1016/S0140-6736(66)92976-X PubMedWeb of Science®Google Scholar 92 Knapp TR, Daniels JR, Kaplan EN. Pathologic scar formation. Am J Pathol 1977; 86: 47. CASPubMedWeb of Science®Google Scholar 93 Craig P. Collagenase activity in cutaneous scars. Hand 1973; 5: 239. 10.1016/0072-968X(73)90036-3 CASPubMedGoogle Scholar 94 Milsom JP, Craig RDP. Collagen degradation in cultured keloid and hypertrophic scar tissue. Br J Dermatol 1973; 89: 635–644. 10.1111/j.1365-2133.1973.tb07591.x CASPubMedWeb of Science®Google Scholar 95 Diegelmann RF, Bryant CP, Cohen IK. Tissue alpha- globulins in keloid formation, Plast Reconstr Surg 1977; 59: 418. 10.1097/00006534-197703000-00018 PubMedWeb of Science®Google Scholar 96 Linares HA, Larson DL. Proteoglycans and collagenase in hypertrophic scar formation. Plast Reconstr Surg 1978; 62: 589. 10.1097/00006534-197810000-00016 CASPubMedWeb of Science®Google Scholar 97 Swann DA, Garg HG, Jung W, et al. Studies on human scar tissue proteoglycans. J Invest Dermatol 1985; 84: 527–531. 10.1111/1523-1747.ep12273517 CASPubMedWeb of Science®Google Scholar 98 Savage K, Siebert E, Swann D. The effect of platelet-de rived growth factor on cell division and glycosaminoglycan synthesis by human skin and scar fibroblasts. J Invest Dermatol 1987; 89: 93–99. 10.1111/1523-1747.ep12580438 CASPubMedWeb of Science®Google Scholar 99 Russell SB, Trupin KM, Rodriguez-Eaton S, et al. Reduced growth-factor requirement of keloid-derived fibroblasts may account for tumor growth. Proc Natl Acad Sci U S A 1988; 85: 587–591. 10.1073/pnas.85.2.587 CASPubMedWeb of Science®Google Scholar 100 Berman B, Duncan MR. Short-term keloid treatment in vivo with human interferon alfa — 2b results in a selective and persistent normalization of keloidal fibroblast collagen, glycosaminoglycan, and collagenase production in vitro. J Am Acad Dermatol 1989; 21: 694–702. 10.1016/S0190-9622(89)70239-5 CASPubMedWeb of Science®Google Scholar 101 Blood D. Heredity of keloids, review of literature and report of a family with multiple keloids in five generations. NY State J Med 1956; 56: 511–519. Google Scholar 102 Russell JD, Russel SB, Turpin KM. Differential effects of hydrocortisone on both growth and collagen metabolism of human fibroblasts from normal and keloid tissue. J Cell Physiol 1978; 97: 221–230. 10.1002/jcp.1040970211 CASPubMedWeb of Science®Google Scholar 103 Kischer CW, Hendrix MJ. Fibronectin in hypertrophic scars and keloids. Cell Tissue Res 1983; 231: 29–37. CASPubMedWeb of Science®Google Scholar 104 Kischer CW, Ties AC, Chvapil M. Perivascular myofibroblasts and microvascular occlusion in hypertrophic scars and keloids. Hum Pathol 1982; 13: 819–824. 10.1016/S0046-8177(82)80078-6 CASPubMedWeb of Science®Google Scholar 105 Crocker DJ, Murad TM, Greer JC. Role of the pericyte in wound healing: an ultrastructural study. Exp Mol Pathol 1970; 13: 51. 10.1016/0014-4800(70)90084-5 CASPubMedWeb of Science®Google Scholar 106 Ross R, Everett NB, Tyler R. Wound healing and collagen formation. VI. The origin of the wound fibroblast studied in parabiosis. J Cell Biol 1970; 44: 645. 10.1083/jcb.44.3.645 CASPubMedGoogle Scholar 107 Lauentaci G, Dioguardi D. HLA antigens in keloids and hypertrophic scars. Arch Dermatol 1977; 113: 1726. 10.1001/archderm.113.12.1726 CASPubMedWeb of Science®Google Scholar 108 Cohen IK, McCoy BJ, Mohanakumar T, et al. Immunoglobulin, complement and histocompatibility antigen studies ins keloid patients. Plast Reconstr Surg 1979; 63: 689–695. 10.1097/00006534-197905000-00013 CASPubMedWeb of Science®Google Scholar 109 Kazeeni A. The immunological aspects of keloidal tumor formation. J Surg Oncol 1988; 38: 16–18. 10.1002/jso.2930380106 CASPubMedWeb of Science®Google Scholar 110 Janssen de Limpens AMP, Cormane RH. Studies on the immunologic aspects of keloids and hypertrophic scars. Arch Dermatol Res 1982; 274: 259–266. 10.1007/BF00403728 CASPubMedWeb of Science®Google Scholar 111 Muir IFK. On the nature of keloidal hypertrophic scars. Br J Plast Surg 1990; 43: 61–69. 10.1016/0007-1226(90)90046-3 PubMedWeb of Science®Google Scholar 112 ER Farmer, AF Hood, eds. Pathology of the skin. Englewood Cliffs , NJ : Prentice Hall, 1990: 414. Google Scholar 113 Kischer CW. Collagen and dermal patterns in the hypertrophic scar. Anat Rec 1973; 179: 137–146. 10.1002/ar.1091790111 CASPubMedWeb of Science®Google Scholar 114 Linares HA, Kischer CW, Dobrkovsky M, et al. The histopathic organization of the hypertrophic scar in humans. J Invest Dermatol 1972; 59: 323–331. 10.1111/1523-1747.ep12627386 CASPubMedWeb of Science®Google Scholar 115 Oku T, Takigawa M, Fukamizu H, et al. Growth kinetics of fibroblasts derived from normal skin and hyper trophic scar. Acta Derm Venereol (Stockh) 1987; 67: 526–528. CASPubMedWeb of Science®Google Scholar 116 Nagata H, Ueki H, Moriguchi T. Fibronectin. Localiza tion in formal human skin, granulation tissue, hyper trophic scar, mature scar, progressive systemic sclerotic skin, and other fibrosing dermatoses. Arch Dermatol 1985; 121: 995–999. CASPubMedWeb of Science®Google Scholar 117 Kischer CW, Hendrix MJ. Fibronectin (FN) in hyper trophic scars and keloids. Cell Tissue Res 1983; 231: 29–37. CASPubMedWeb of Science®Google Scholar 118 Cohen IK, Diegelman RF, Keiser HR. Collagen metabolism in keloid and hypertrophic scar. In: JJ Longacre, ed. The ultrastructure of collagen. Springfield : CC Thomas, 1976: 199. Google Scholar 119 Muir IFK. On the nature of keloids and hypertrophic scars. Br J Plast Surg 1990; 43: 61–69. 10.1016/0007-1226(90)90046-3 CASPubMedWeb of Science®Google Scholar 120 Bailey AJ, Bazin S, Simms TJ, et al. Characterization of the collagen of human hypertrophic and normal scars. Biochim Biophys Acta 1975; 405: 412–421. 10.1016/0005-2795(75)90106-3 CASPubMedWeb of Science®Google Scholar 121 Abergel RP, Pizzuro D, Meeker CA, et al. Biochemical composition of the connective tissue in keloids and analysis of collagen metabolism in keloid fibroblast cultures. J Invest Dermatol 1985; 84: 384–390. 10.1111/1523-1747.ep12265471 CASPubMedWeb of Science®Google Scholar 122 Uitto J, Paul JL, Brockley K, et al. Elastic fibers in human skin: quantitation of elastic fibers by computerized digital image analyses and determination of elastin by radioimmunoassay of desmosine. Lab Invest 1984; 49: 499–505. Web of Science®Google Scholar 123 Larson DL, Kischer CW, Lewis SR. Scanning and transmission electron microscopy studies of hypertrophic scars. In: JJ Longacre, ed. The ultrastructure of collagen. Springfield : CC Thomas, 1976: 263. Google Scholar 124 Donoff RB, Swann DA, Schweidt SH. Glycosaminoglycans of normal and hypertrophic human scar. Exp Mol Pathol 1984; 40: 12–20. 10.1016/0014-4800(84)90061-3 CASWeb of Science®Google Scholar 125 Honda T, Matsunaga E, Katagiri K, et al. The proteoglycans in hypertrophic scar. J Dermatol 1986; 13: 326–333. 10.1111/j.1346-8138.1986.tb02950.x CASPubMedGoogle Scholar 126 Shetlar MR, Shetlar CL, Chien SF, et al. The hypertrophic scar. Hexosamine containing components of burn scars. Proc Soc Exp Biol Med 1972; 139: 544–547. 10.3181/00379727-139-36182 CASPubMedWeb of Science®Google Scholar 127 Poole AR, Pidoux I, Reiner A, et al. An immunoelectron microscopic study of the organization of proteoglycan monomer, link protein and collagen in the matrix of articular cartilage. J Cell Biol 1982; 93: 921–937. 10.1083/jcb.93.3.921 CASPubMedWeb of Science®Google Scholar 128 Dunn MG, Silver FH, Swann DA. Mechanical analysis of hypertrophic scar tissue: structural basis for apparent increased rigidity. J Invest Dermatol 1985; 84: 9–13. 10.1111/1523-1747.ep12274528 CASPubMedWeb of Science®Google Scholar 129 Hoopes JE, Chi-tsung S. In JC enzymes activities in hypertropic scars and keloids. Plast Reconstr Surg 1971; 47(2): 132–137. 10.1097/00006534-197102000-00006 CASPubMedWeb of Science®Google Scholar 130 Harding RH, Rosen F, Nicholas CA. Depression of ala- nine transaminase activity in the liver of rats bearing Walker carcinoma 256. Cancer Res 1964; 24: 1318. CASPubMedWeb of Science®Google Scholar 131 James W, Besanceny C, Odom R. The ultrastructure of a keloid. J Am Acad Dermatol 1989; 3: 50–57. 10.1016/S0190-9622(80)80224-6 Google Scholar 132 Klebr N. Striae cutis atrophicae: morphokinetic examinations in vitro. Acta Derm Venereol [Suppl] (Stockb) 1979; 59: 105–108. Google Scholar 133 Poidevin LOS. Striae gravidarum: their relation to adrenal cortical hyperfunction. Lancet 1959; 11: 436–438. 10.1016/S0140-6736(59)90421-0 CASGoogle Scholar 134 Sisson WR. Colored striae in adolescent children. J Pediatr 1954; 45: 520. 10.1016/S0022-3476(54)80114-4 CASPubMedWeb of Science®Google Scholar 135 Herxheimer H. Cutaneous striae in normal boys. Lancet 1953; 2: 204. 10.1016/S0140-6736(53)90149-4 Google Scholar 136 Gogate AN, Prunty FTG. Adrenal cortical function in "obesity with pink striae" in the young adult. Clin Endocrinol Metab 1963; 23: 747. 10.1210/jcem-23-8-747 CASPubMedWeb of Science®Google Scholar 137 Arem AJ, Kischer CW. Analysis of striae. Plast Reconstr Surg 1980; 65: 22–29. 10.1097/00006534-198001000-00005 CASPubMedWeb of Science®Google Scholar 138 Chernovysky ME, Knox JM. Atrophic striae after occlusive corticosteroid therapy. Arch Dermatol 1964; 90: 15–19. 10.1001/archderm.1964.01600010021006 PubMedWeb of Science®Google Scholar 139 Sarrni H, Hopsu-Havu BK. The decrease of hyaluronate synthesis by antiinflammatory steroids in vivo. Br J Dermatol 1978; 98: 445–449. 10.1111/j.1365-2133.1978.tb06539.x PubMedWeb of Science®Google Scholar 140 Epstein NN, Epstein WL, Epstein JH. Atropbic striae in patients with inguinal intertrigo. Arch Dermatol 1963; 87: 450. 10.1001/archderm.1963.01590160042007 Web of Science®Google Scholar 141 Jablonska S, Groniowska M, Dabrowski J. Comparative evaluation of skin atrophy in man produced by topical corticosteroids. Br J Dermatol 1979; 100: 193–206. 10.1111/j.1365-2133.1979.tb05561.x CASPubMedWeb of Science®Google Scholar 142 Tsujit, Sawabe M. Elastic fibers in striae distensae. J Cutan Pathol 1988; 15: 215. 10.1111/j.1600-0560.1988.tb00547.x CASPubMedWeb of Science®Google Scholar 143 Pinkus H, Keecb MK, Mehregan AH. Histopathology of striae distensae, with special reference to striae and wound healing in the Marfan syndrome. J Invest Dermatol 1966; 46: 283. 10.1038/jid.1966.43 CASPubMedWeb of Science®Google Scholar 144 Zheng P, Lavker RM, Klingman AM. Anatomy of striae. Br J Dermatol 1985; 112: 185. 10.1111/j.1365-2133.1985.tb00082.x CASPubMedWeb of Science®Google Scholar Citing Literature Volume33, Issue10October 1994Pages 681-691 ReferencesRelatedInformation

Referência(s)