Outro Acesso aberto

References

2008; Wiley; Linguagem: Inglês

10.1002/9781118625651.refs

ISSN

1940-6347

Autores

Donald Gross, John Shortle, James M. Thompson, Carl M. Harris,

Tópico(s)

Probability and Risk Models

Resumo

Free Access References Donald Gross, Donald GrossSearch for more papers by this authorJohn F. Shortle, John F. ShortleSearch for more papers by this authorJames M. Thompson, James M. ThompsonSearch for more papers by this authorCarl M. Harris, Carl M. HarrisSearch for more papers by this author Book Author(s):Donald Gross, Donald GrossSearch for more papers by this authorJohn F. Shortle, John F. ShortleSearch for more papers by this authorJames M. Thompson, James M. ThompsonSearch for more papers by this authorCarl M. Harris, Carl M. HarrisSearch for more papers by this author First published: 25 July 2008 https://doi.org/10.1002/9781118625651.refsBook Series:Wiley Series in Probability and Statistics AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat Bibliography Abate, J., Choudhury, G., and Whitt, W. 1999. An introduction to numerical transform inversion and its application to probability models. In Computational Probability, W. Grassman, Ed. Kluwer, Boston, 257– 323. Google Scholar Abate, J., Choudhury, G. L., and Whitt, W. 1996. On the Laguerre method for numerically inverting Laplace transforms. INFORMS Journal on Computing 8, 413– 427. CrossrefGoogle Scholar Abate, J., Choudhury, G. L., and Whitt, W. 1997. Numerical inversion of multidimensional Laplace transforms by the Laguerre method. Performance Evaluation 31, 229– 243. CrossrefWeb of Science®Google Scholar Abate, J. and Whitt, W. 1989. Calculating time-dependent performance measures for the M/M/1 queue. IEEE Transactions on Communications 37, 10, 1102– 1104. CrossrefWeb of Science®Google Scholar Abate, J. and Whitt, W. 1992. The Fourier-series method for inverting transforms of probability distributions. Queueing Systems 10, 5– 88. CrossrefGoogle Scholar Abate, J. and Whitt, W. 2006. A unified framework for numerically inverting Laplace transforms. INFORMS Journal on Computing 18, 4, 408– 421. CrossrefWeb of Science®Google Scholar Abramowitz, M. and Stegun, I. A. 1964. Handbook of mathematical functions. In Applied Mathematics Series 55. National Bureau of Standards, Washington, DC. Google Scholar Albin, S. L. 1984. Approximating a point process by a renewal process, II: Superposition arrival processes to queues. Operations Research 32, 5, 1133– 1162. CrossrefWeb of Science®Google Scholar Allen, A. O. 1990. Probability, Statistics, and Queueing Theory with Computer Science Applications, 2nd ed. Academic Press, New York. Google Scholar Andradottir, S. 1998. A review of simulation optimization techniques. In Proceedings of the 1998 Winter Simulation Conference. Washington, DC, 151– 158. Google Scholar Artalejo, J. R. 1999. Retrial queues. Mathematical and Computer Modeling 30, 1– 6. CrossrefWeb of Science®Google Scholar Ashour, S. and Jha, R. D. 1973. Numerical transient-state solutions of queueing systems. Simulation 21, 117– 122. CrossrefWeb of Science®Google Scholar Asmussen, S. 2003. Applied Probability and Queues, 2nd ed. Springer, New York. Google Scholar Avi-Itzhak, B. and Naor, P. 1963. Some queuing problems with the service station subject to breakdown. Operations Research 11, 3, 303– 320. CrossrefWeb of Science®Google Scholar Bailey, N. T. J. 1954. A continuous time treatment of a single queue using generating functions. Journal of the Royal Statistical Society: Series B 16, 288– 291. Wiley Online LibraryWeb of Science®Google Scholar Banks, J., Carson, J. S., and Nelson, B. L. 2005. Discrete-Event System Simulation, 4 ed. Prentice-Hall, Upper Saddle River, NJ. Google Scholar Barbour, A. D. 1976. Networks of queues and the methods of stages. Advances in Applied Probability 8, 584– 591. CrossrefWeb of Science®Google Scholar Barlow, R. E. and Proschan, F. 1975. Statistical Theory of Reliability and Life Testing. Holt, Rinehart and Winston, New York. Google Scholar Baskett, F., Chandy, K. M., Muntz, R. R., and Palacios, F. G. 1975. Open, closed and mixed networks of queues with different classes of customers. Journal of the Association for Computing Machinery 22, 248– 260. CrossrefWeb of Science®Google Scholar Baxter, G. and Donsker, M. D. 1957. On the distribution of the supremum functional for processes with stationary independent increments. Transactions of the American Mathematical Society 85, 1, 73– 87. CrossrefGoogle Scholar Benesš, V. E. 1957. A sufficient set of statistics for a simple telephone exchange model. Bell System Technical Journal 36, 939– 964. Wiley Online LibraryGoogle Scholar Bengtsson, B. 1983. On some control problems for queues. Linköping Studies in Science and Technology, Dissertation No. 87. Google Scholar Berman, M. and Westcott, M. 1983. On queueing systems with renewal departure processes. Advances in Applied Probability 15, 657– 673. CrossrefWeb of Science®Google Scholar Bhat, U. N., Shalaby, M., and Fischer, M. J. 1979. Approximation techniques in the solution of queueing problems. Naval Research Logistics Quarterly 26, 311– 326. Wiley Online LibraryWeb of Science®Google Scholar Billingsley, P. 1961. Statistical Inference for Markov Processes. University of Chicago Press, Chicago. Google Scholar Billingsley, P. 1995. Probability and Measure, 3rd ed. Wiley, New York. Google Scholar Bodily, S. E. 1986. Spreadsheet modeling as a stepping stone. Interfaces 16, 5 (September-October), 34– 52. Google Scholar Bolch, G., Greiner, S., de Meer, H., and Trivedi, K. S. 2006. Queueing Networks and Markov chains, 2nd ed. Wiley, Hoboken, NJ. Wiley Online LibraryGoogle Scholar Bookbinder, J. H. and Martell, P. L. 1979. Time-dependent queueing approach to helicopter allocation for forest fire initial attack. Infor. 17, 58– 70. Web of Science®Google Scholar Botta, R. F. and Harris, C. M. 1980. Approximation with generalized hyperexponential distribution: Weak convergence results. Queueing Systems 1, 169– 190. CrossrefGoogle Scholar Brigham, G. 1955. On a congestion problem in an aircraft factory. Journal of the Operations Research Society of America 3, 412– 428. CrossrefWeb of Science®Google Scholar Brill, P. H. 2008. Level Crossing Methods in Stochastic Models. Springer, New York. CrossrefGoogle Scholar Bruell, S. C. and Balbo, G. 1980. Computational Algorithm for Closed Queueing Networks. North Holland, Operating and Programming Systems Series, P. J. Denning (Ed.). New York, Oxford. Web of Science®Google Scholar Brumelle, S. L. 1971. Some inequalities for parallel-server queues. Operations Research 19, 402– 413. CrossrefWeb of Science®Google Scholar Bunday, B. D. and Scraton, R. E. 1980. The G/M/r machine interference model. European Journal of Operational Research 4, 399– 402. CrossrefWeb of Science®Google Scholar Burke, P. J. 1956. The output of a queueing system. Operations Research 4, 699– 714. CrossrefWeb of Science®Google Scholar Burke, P. J. 1969. The dependence of service in tandem M/M/s queues. Operations Research 17, 754– 755. CrossrefWeb of Science®Google Scholar Buzen, J. P. 1973. Computational algorithms for closed queueing networks with exponential servers. Communications of the ACM 16, 527– 531. CrossrefWeb of Science®Google Scholar Carson, J. S. 1986. Convincing users of model's validity is challenging aspect of modeler's job. Industrial Engineering 18, 74– 85. Web of Science®Google Scholar Çinlar, E. 1972. Superposition of point processes. In Stochastic Point Processes: Statistical Analysis, Theory, and Applications, P. A. W. Lewis, Ed. Wiley, Hoboken, NJ, 549– 606. Google Scholar Çinlar, E. 1975. Introduction to Stochastic Processes. Prentice-Hall, Englewood Cliffs, NJ. Google Scholar Champernowne, D. G. 1956. An elementary method of solution of the queueing problem with a single server and a constant parameter. Journal of the Royal Statistical Society: Series B 18, 125– 128. Wiley Online LibraryWeb of Science®Google Scholar Chaudhry, M. L., Harris, C. M., and Marchal, W. G. 1990. Robustness of rootfinding in single-server queueing models. ORSA Journal on Computing 2, 273– 286. CrossrefGoogle Scholar Chaudhry, M. L. and Templeton, J. G. C. 1983. A First Course in Bulk Queues. Wiley, Hoboken, NJ. Google Scholar Clarke, A. B. 1957. Maximum likelihood estimates in a simple queue. The Annals of Mathematical Statistics 28, 1036– 1040. CrossrefWeb of Science®Google Scholar Cobham, A. 1954. Priority assignment in waiting line problems. Operations Research 2, 70– 76; correction, 3, 547. CrossrefWeb of Science®Google Scholar Cohen, J. W. 1982. The Single Server Queue, 2nd ed. North Holland, New York. Google Scholar Cooper, R. B. 1981. Introduction to Queueing Theory, 2nd ed. North Holland, New York. Google Scholar Cooper, R. B. and Gross, D. 1991. On the convergence of Jacobi and Gauss–Seidel iteration for steady-state probabilities of finite-state continuous-time Markov chains. Stochastic Models 7, 185– 189. CrossrefGoogle Scholar Cox, D. R. 1955. A use of complex probabilities in the theory of stochastic processes. Proceedings of the Cambridge Philosophical Society 51, 313– 319. CrossrefGoogle Scholar Cox, D. R. 1965. Some problems of statistical analysis connected with congestion. In Proceedings of the Symposium on Congestion Theory, W. L. Smith and W. E. Wilkinson, Eds. University of North Carolina Press, Chapel Hill, NC. Google Scholar Crabill, T. B. 1968. Sufficient conditions for positive recurrence of specially structured Markov chains. Operations Research 16, 858– 867. CrossrefWeb of Science®Google Scholar Crabill, T. B., Gross, D., and Magazine, M. 1977. A classified bibliography of research on optimal design and control of queues. Operations Research 28, 219– 232. CrossrefWeb of Science®Google Scholar Crane, M. A. and Iglehart, D. L. 1975. Simulating stable stochastic systems, III: Regenerative processes and discrete-event simulations. Operations Research 23, 33– 45. CrossrefWeb of Science®Google Scholar Crommelin, C. D. 1932. Delay probability formulae when the holding times are constant. P O . Electrical Engineering Journal 25, 41– 50. Google Scholar De Smit, J. H. A. 1973. Some general results for many server queues. Advances in Applied Probability 5, 153– 169. CrossrefGoogle Scholar Disney, R. L. 1981. Queueing networks. American Mathematical Society Proceedings of the Symposium on Applied Mathematics 25, 53– 83. CrossrefGoogle Scholar Disney, R. L. 1996. Networks of queue. In Encyclopedia of Operations Research & Management Science, S. I. Gass and C. M. Harris, Eds. Kluwer Academic, Boston. Google Scholar Disney, R. L., McNickle, D. C., and Simon, B. 1980. The M/G/1 queue with instantaneous Bernoulli feedback. Naval Research Logistics Quarterly 27, 635– 644. Wiley Online LibraryWeb of Science®Google Scholar Erlang, A. K. 1909. The theory of probabilities and telephone conversations. Nyt Tidsskrift Mat. B 20, 33– 39. Google Scholar Erlang, A. K. 1917. Solution of some problems in the theory of probabilities of significance in automatic telephone exchanges. Electroteknikeren 13, 5–13. English translation, P. O. Elec. Eng. J. 10, 189– 197 (1917–1918). Google Scholar Fabens, A. T. 1961. The solution of queueing and inventory models by semi-Markov processes. Journal of the Royal Statistical Society: Series B 23, 113– 127. Wiley Online LibraryGoogle Scholar Falin, G. I. and Templeton, J. G. C. 1997. Retrial Queues. Chapman & Hall, New York. CrossrefWeb of Science®Google Scholar Feller, W. 1957. An Introduction to Probability Theory and Its Applications. Vol. 1. Wiley, Hoboken, NJ. Google Scholar Feller, W. 1971. An Introduction to Probability Theory and Its Applications, 2nd ed. Vol. 2. Wiley, Hoboken, NJ. Google Scholar Fishman, G. S. 1971. Estimating sample size in computer simulation experiments. Management Science 18, 21– 38. CrossrefWeb of Science®Google Scholar Fishman, G. S. 1973a. Concepts and Methods in Discrete Event Digital Simulation. Wiley, New York. Google Scholar Fishman, G. S. 1973b. Statistical analysis for queueing simulations. Management Science 20, 363– 369. CrossrefWeb of Science®Google Scholar Fishman, G. S. 2001. Discrete-Event Simulation Modeling, Programming and Analysis. Springer-Verlag, New York. CrossrefGoogle Scholar Foster, F. G. 1953. On stochastic matrices associated with certain queuing processes. The Annals of Mathematical Statistics 24, 355– 360. CrossrefWeb of Science®Google Scholar Fox, B. L. 1981. Fitting “standard” distributions to data is necessarily good: Dogma or myth. Proceedings of the 1981 Winter Simulation Conference Institute of Electrical and Electronic Engineers, Piscataway, NJ, 305– 307. Google Scholar Fry, T. C. 1928. Probability and Its Engineering Uses. Van Nostrand, Princeton, NJ. Google Scholar Gans, N., Koole, G., and Mandelbaum, A. 2003. Telephone call centers: Tutorial, review, and research prospects. Manufacturing and Service Operations Management 5, 79– 141. CrossrefGoogle Scholar Gass, S. I. and Thompson, B. W. 1980. Guidelines for model evaluation. Operations Research 28, 431– 439. CrossrefWeb of Science®Google Scholar Gaver, D. P. 1966. Observing stochastic processes and approximate transform inversion. Operations Research 14, 444– 459. CrossrefWeb of Science®Google Scholar Gaver, D. P., J. 1968. Diffusion approximations and models for certain congestion problems. Journal of Applied Probability 5, 607– 623. CrossrefWeb of Science®Google Scholar Gebhard, R. F. 1967. A queueing process with bilevel hysteretic service-rate control. Naval Research Logistics Quarterly 14, 55– 68. Wiley Online LibraryWeb of Science®Google Scholar Gelenbe, E. and Pujolle, G. 1998. Introduction to Queueing Networks, 2nd ed. Wiley, New York. Google Scholar Gordon, W. J. and Newell, G. F. 1967. Closed queuing systems with exponential servers. Operations Research 15, 254– 265. CrossrefWeb of Science®Google Scholar Gradshteyn, I. S. and Ryzhik, I. M. 2000. Table of Integrals, Series, and Products, 6th ed. Academic Press, New York. Google Scholar Grassmann, W. 1977. Transient solutions in Markovian queueing systems. Computers and Operations Research 4, 47– 56. CrossrefWeb of Science®Google Scholar Greenberg, I. 1973. Distribution-free analysis of M/G/1 and G/M/l queues. Operations Research 21, 629– 635. CrossrefWeb of Science®Google Scholar Gross, D. and Harris, C. M. 1985. Fundamentals of Queueing Theory, 2nd ed. Wiley, Hoboken, NJ. Google Scholar Gross, D. and Ince, J. 1981. The machine repair problem with heterogeneous populations. Operations Research 29, 532– 549. CrossrefWeb of Science®Google Scholar Gross, D. and Juttijudata, M. 1997. Sensitivity of output measures to input distributions in queueing simulation modeling. In Proceedings of the 1997 Winter Simulation Conference. Institute of Electrical and Electronics Engineers, Piscataway, New Jersey. CrossrefGoogle Scholar Gross, D., Kioussis, L. C., Miller, D. R., and Soland, R. M. 1984. Computational aspects of determining steady-state availability for Markovian multi-echelon repairable item inventory models. Tech report, imse, The George Washington University, Washington, DC. CrossrefGoogle Scholar Gross, D. and Miller, D. R. 1984. The randomization technique as a modeling tool and solution procedure for transient Markov processes. Operations Research 32, 343– 361. CrossrefWeb of Science®Google Scholar Gross, D., Miller, D. R., and Soland, R. M. 1983. A closed queueing network model for multi-echelon repairable item provisioning. IIE Transactions 15, 344– 352. CrossrefWeb of Science®Google Scholar Grossman, T. A. 1999. Teacher's forum: spreadsheet modeling and simulation improves understanding of queues. Interfaces 29, 3 (May–June), 88– 103. CrossrefWeb of Science®Google Scholar Halfin, S. and Whitt, W. 1981. Heavy-traffic limits for queues with many exponential servers. Operations Research 29, 3, 567– 588. CrossrefWeb of Science®Google Scholar Harris, C. M. 1974. Some new results in the statistical analysis of queues. In Mathematical Methods in Queueing Theory, A. B. Clarke, Ed. Springer-Verlag, Berlin. CrossrefGoogle Scholar Harris, C. M. 1985. A note on mixed exponential approximations for GI/G/1 queues. Computers and Operations Resesarch 12, 285– 289. CrossrefWeb of Science®Google Scholar Harris, C. M. and Marchal, W. G. 1988. State dependence in M/G/1 server-vacation models. Operations Research 36, 560– 565. CrossrefWeb of Science®Google Scholar Heyman, D. P. 1968. Optimal operating policies for M/G/1 queuing systems. Operations Research 16, 362– 382. CrossrefWeb of Science®Google Scholar Heyman, D. P. and Sobel, M. J. 1982. Stochastic Models in Operations Research. Vol. I. McGraw-Hill, New York. Web of Science®Google Scholar Heyman, D. P. and Sobel, M. J. 1984. Stochastic Models in Operations Research. Vol. II. McGraw-Hill, New York. Google Scholar Hillier, F. S. and Lieberman, G. J. 1995. Introduction to Operations Research, 6th ed. McGraw-Hill, New York. Google Scholar Hunt, G. C. 1956. Sequential arrays of waiting lines. Operations Research 4, 674– 683. CrossrefWeb of Science®Google Scholar Jackson, J. R. 1957. Networks of waiting lines. Operations Research 5, 518– 521. CrossrefWeb of Science®Google Scholar Jackson, J. R. 1963. Jobshop-like queueing systems. Management Science 10, 131– 142. CrossrefWeb of Science®Google Scholar Jagerman, D. L. 1978. An inversion technique for the Laplace transform with applications. Bell System Technical Journal 57, 669– 710. Wiley Online LibraryWeb of Science®Google Scholar Jagerman, D. L. 1982. An inversion technique for the Laplace transform. Bell System Technical Journal 61, 1995– 2002. Wiley Online LibraryWeb of Science®Google Scholar Jaiswal, N. K. 1968. Priority Queues. Academic Press, New York. Google Scholar Juttijudata, M. 1996. Sensitivity of output performance measures to input distributions in queueing simulation modeling. Ph.D. thesis, Department of Operations Research, The George Washington University, Washington, DC. Google Scholar Kao, E. P. C. 1991. Using state reduction for computing steady state probabilities of GI/PH/1 types. ORSA Journal on Computing 3, 231– 240. CrossrefGoogle Scholar Karlin, S. and Taylor, H. M. 1975. A First Course on Stochastic Processes. Academic Press, New York. Google Scholar Keilson, J., Cozzolino, J., and Young, H. 1968. A service system with unfilled requests repeated. Operations Research 16, 6, 1126– 1137. CrossrefWeb of Science®Google Scholar Kelly, F. P. 1975. Networks of queues with customers of different types. Journal of Applied Probability 12, 542– 55. CrossrefWeb of Science®Google Scholar Kelly, F. P. 1976. Networks of queues. Advances in Applied Probability 8, 416– 432. CrossrefWeb of Science®Google Scholar Kelly, F. P. 1979. Reversibility and Stochastic Networks. Wiley, Hoboken, NJ. Google Scholar Kelton, W. D. 1984. Input data collection and analysis. Proceedings of the 1984 Winter Simulation Conference Institute of Electrical and Electronics Engineers, Piscataway, NJ, 305– 307. Google Scholar Kelton, W. D. and Law, A. M. 1983. A new approach for dealing with the startup problem in discrete event simulation. Naval Research Logistics Quarterly 30, 641– 658. Wiley Online LibraryCASPubMedWeb of Science®Google Scholar Kendall, D. G. 1953. Stochastic processes occurring in the theory of queues and their analysis by the method of imbedded Markov chains. The Annals of Mathematical Statistics 24, 338– 354. CrossrefWeb of Science®Google Scholar Kennedy, D. P. 1972. The continuity of the single-server queue. Journal of Applied Probability 9, 370– 381. CrossrefWeb of Science®Google Scholar Kesten, H. and Runnenburg, J. T. 1957. Priority waiting line problems I, II. Koninkz. Ned. Akad. Wetenschap. Proc. Ser. A 60, 312– 336. Google Scholar Kim, S. 2004. The heavy-traffic bottleneck phenomenon under splitting and superposition. European Journal of Operations Research 157, 736– 745. CrossrefWeb of Science®Google Scholar Kingman, J. F. C. 1962a. On queues in heavy traffic. Journal of the Royal Statistical Society. Series B (Methodological) 24, 2, 383– 392. Wiley Online LibraryGoogle Scholar Kingman, J. F. C. 1962b. Some inequalities for the queue GIIGI1. Biometrika 49, 315– 324. CrossrefWeb of Science®Google Scholar Koenigsberg, E. 1966. On jockeying in queues. Management Science 12, 412– 436. CrossrefGoogle Scholar Kolesar, P. and Green, L. 1998. Insights on service system design from a normal approximation to Erlang's formula. Production and Operations Management 7, 3, 282– 293. Wiley Online LibraryGoogle Scholar Kosten, L. 1948. On the validity of the Erlang and Engset loss formulae. Het P.T.T. Bedriff 2, 22– 45. Google Scholar Kraemer, W. and Langenbach-Belz, M. 1976. Approximate formulae for the delay in the queueing system GI/G/1. Congressbook, Eighth International Teletraffic Congress, 235. 1– 235.8. Google Scholar Krakowski, M. 1973. Conservation methods in queueing theory. RAIRO 7 V-1, 63– 84. Google Scholar Krakowski, M. 1974. Arrival and departure processes in queues. Pollaczek–Khintchine formulas for bulk arrivals and bounded systems. RAIRO 8 V-1, 45– 56. Google Scholar Lavenberg, S. S. and Reiser, M. 1979. Stationary state probabilities at arrival instants for closed queueing networks with multiple types of customers. Research Report RC 759, IBM T. J. Watson Research Center, Yorktown Heights, NY. Web of Science®Google Scholar Law, A. M. 1977. Confidence intervals in discrete event simulation: a comparison of replication and batch means. Naval Research Logistics Quarterly 27, 667– 678. Wiley Online LibraryWeb of Science®Google Scholar Law, A. M. 2005. How to build credible and valid simulation models. Proceedings of the 2005 Winter Simulation Conference Orlando, 27– 32. Google Scholar Law, A. M. and Kelton, W. D. 2000. Simulation Modeling and Analysis, 3rd ed. McGraw-Hill, New York. Google Scholar L'Ecuyer, P. 2006. Random number generation. In Elsevier Handbooks in Operations Research and Management Science: Simulation, S. G. Henderson and B. Nelson, Eds. Chap. 3. Google Scholar Ledermann, W. and Reuter, G. E. 1954. Spectral theory for the differential equations of simple birth and death process. Philosophical Transactions of the Royal Society of London Series A 246, 321– 369. CrossrefWeb of Science®Google Scholar Leemis, L. M. 1996. Discrete-event simulation input process modeling. Proceedings 1996 Winter Simulation Conference San Diego, CA, Institute of Electrical and Electronics Engineers, Piscataway, NJ, 39– 46. Google Scholar Leemis, L. M. and Park, S. K. 2006. Discrete-Event Simulation, A First Course. Prentice Hall, Upper Saddle River, NJ. Google Scholar Lemoine, A. J. 1977. Networks of queues—a survey of equilibrium analysis. Management Science 24, 464– 481. CrossrefWeb of Science®Google Scholar Leon, L., Przasnyski, Z., and Seal, K. C. 1996. Spreadsheets and OR/MS models: an end-user perspective. Interfaces 26, 2 (March-April), 92– 104. CrossrefWeb of Science®Google Scholar Liitschwager, J. and Ames, W. F. 1975. On transient queues—practice and pedagogy. 206. Google Scholar Lilliefors, H. W. 1966. Some confidence intervals for queues. Operations Research 14, 723– 727. CrossrefWeb of Science®Google Scholar Lilliefors, H. W. 1967. On the Kolmogorov–Smirnov statistic for normality with mean and variance unknown. Journal of the American Statistical Association 62, 399– 402. CrossrefWeb of Science®Google Scholar Lilliefors, H. W. 1969. On the Kolmogorov–Smirnov statistic for the exponential distribution with mean unknown. Journal of the American Statistical Association 64, 387– 389. CrossrefWeb of Science®Google Scholar Lindley, D. V. 1952. The theory of queues with a single server. Proceedings of the Cambridge Philosophical Society 48, 277– 289. CrossrefWeb of Science®Google Scholar Little, J. D. C. 1961. A proof for the queuing formula L = Ǐ»W. Operations Research 9, 383– 387. CrossrefWeb of Science®Google Scholar Marchal, W. G. 1978. Some simpler bounds on the mean queuing time. Operations Research 26, 1083– 1088. CrossrefWeb of Science®Google Scholar Maron, M. J. 1982. Numerical Analysis, A Practical Approach. Macmillan, New York. Google Scholar Marshall, K. T. 1968. Some inequalities in queuing. Operations Research 16, 651– 665. CrossrefWeb of Science®Google Scholar Melamed, B. 1979. Characterization of Poisson traffic streams in Jackson queueing networks. Advances in Applied Probability 11, 422– 438. CrossrefWeb of Science®Google Scholar Miller, D. R. 1981. Computation of the steady-state probabilities for M/M/1 priority queues. Operations Research 29, 945– 958. CrossrefWeb of Science®Google Scholar Moder, J. J. and Phillips, C. R., J. 1962. Queuing with fixed and variable channels. Operations Research 10, 218– 231. CrossrefWeb of Science®Google Scholar Molina, E. C. 1927. Application of the theory of probability to telephone trunking problems. Bell Syst. Tech. J. 6, 461– 494. Wiley Online LibraryGoogle Scholar Morse, P. M. 1958. Queues, Inventories and Maintenance. Wiley, New York. Google Scholar Neuts, M. F. 1973. The single server queue in discrete time—numerical analysis, I. Naval Research Logistics Quarterly 20, 297– 304. Wiley Online LibraryWeb of Science®Google Scholar Neuts, M. F. 1981. Matrix-Geometric Solutions in Stochastic Models. Johns Hopkins University Press, Baltimore. Google Scholar Newell, G. F. 1972. Applications of Queueing Theory. Chapman & Hall, London. Google Scholar Palm, C. 1938. Analysis of the Erlang traffic formulae for busy-signal arrangements. Ericsson Tech. 6, 39– 58. Google Scholar Papoulis, A. 1991. Probability, Random Variables and Stochastic Processes, 2nd ed. McGraw-Hill, New York. Google Scholar Parzen, E. 1960. Modern Probability and Its Applications. Wiley, Hoboken, NJ. Google Scholar Parzen, E. 1962. Stochastic Processes. Holden-Day, San Francisco. Google Scholar Perros, H. 1994. Queueing Networks with Blocking. Oxford University Press, New York. Google Scholar Phipps, T. E., J. 1956. Machine repair as a priority waiting-line problem. Operations Research 4, 76– 85. (Comments by W. R. Van Voorhis, 4, 86). CrossrefWeb of Science®Google Scholar Piessens, R. 1975. A bibliography on numerical inversion of the Laplace transform and applications. Journal of Computational and Applied Mathematics 1, 115– 128. CrossrefGoogle Scholar Piessens, R. and Dang, N. D. P. 1976. A bibliography on numerical inversion of the Laplace transform and applications: a supplement. Journal of Computational and Applied Mathematics 2, 225– 228. CrossrefGoogle Scholar Pollaczek, F. 1932. Losung eines geometrischen wahrscheinlichkeits-problems. Math. Z. 35, 230– 278. CrossrefGoogle Scholar Posner, M. and Bernholtz, B. 1968. Closed finite queueing networks with time lags. Operations Research 16, 962– 976. CrossrefWeb of Science®Google Scholar Prabhu, N. U. 1965a. Queues and Inventories. Wiley, Hoboken, NJ. Google Scholar Prabhu, N. U. 1965b. Stochastic Processes. Macmillan, New York. Google Scholar Prabhu, N. U. 1974. Stochastic control of queueing systems. Naval Research Logistics Quarterly 21, 411– 418. Wiley Online LibraryWeb of Science®Google Scholar Puterman, M. L. 1991. Markov Decision Processes. Wiley, Hoboken, NJ. Google Scholar Rainville, E. D. and Bedient, P. E. 1969. A Short Course in Differential Equations. Macmillan, New York. Google Scholar Rao, S. S. 1968. Queueing with balking and reneging in M/G/1 systems. Metrika 12, 173– 188. Google Scholar Reich, E. 1957. Waiting times when queues are in tandem. The Annals of Mathematical Statistics 28, 768– 773. CrossrefWeb of Science®Google Scholar Resnick, S. I. 1992. Adventures in Stochastic Processes. Birkhauser, Boston. Google Scholar Romani, J. 1957. Un modelo de la teoria de colas con número variable de canales. Trabajos Estadestica 8, 175– 189. CrossrefGoogle Scholar Ross, S. M. 1996. Stochastic Processes, 2nd ed. Wiley, New York. Google Scholar Ross, S. M. 2007. An Introduction to Probability Models, 9th ed. Academic Press, New York. Google Scholar Rubinstein, R. Y. 1986. Monte Carlo Optimization, Simulation and Sensitivity of Queueing Networks. Wiley, Hoboken, NJ. Google Scholar Rubinstein, R. Y. and Melamed, B. 1998. Modern Simulation and Modeling. Wiley, Hoboken, NJ. Google Scholar Rue, R. C. and Rosenshine, M. 1981. Some properties of optimal control policies for entries to an M/M/1 queue. Naval Research Logistics Quarterly 28, 525– 532. Wiley Online LibraryWeb of Science®Google Scholar Saaty, T. L. 1961. Elements of Queueing Theory with Applications. McGraw Hill, New York. Google Scholar Sakurai, T. 2004. Numerical inversion for Laplace transforms of functions with discontinuities. Advances in Applied Probability 36, 2, 616– 642. CrossrefWeb of Science®Google Scholar Sargent, R. G. 2003. Verification and validation of simulation models. Proceedings of the 2003 Winter Simulation Conference New Orleans, 37– 48. Google Scholar Schmeiser, B. W. 1982. Batch size effects in the analysis of simulation output. Operations Research 30, 556– 568. CrossrefWeb of Science®Google Scholar Schrage, L. E. and Miller, L. W. 1966. The queue M/G/1 with the shortest remaining processing time discipline. Operations Research 14, 670– 684. CrossrefWeb of Science®Google Scholar Schruben, L. W. 1980. Establishing the credibility of simulations. Simulation 34, 101– 105. CrossrefWeb of Science®Google Scholar Schruben, L. W. 1982. Detecting initialization bias in simulation output. Operations Research 30, 569– 590. CrossrefWeb of Science®Google Scholar Serfozo, R. F. 1981. Optimal control of random walks, birth and death processes, and queues. Advances in Applied Probability 13, 61– 83. CrossrefWeb of Science®Google Scholar Serfozo, R. F. and Lu, F. V. 1984. M/M/1 queueing decision processes with monotone hysteretic optimal policies. Operations Research 32, 1116– 1132. CrossrefWeb of Science®Google Scholar Sevick, K. C. and Mitrani, I. 1979. The distribution of queueing network states at input and output instants. In Proceedings of the 4th International Symposium on Modelling and Performance Evaluation of Computer Systems. Vienna. Google Scholar Simon, B. and Foley, R. D. 1979. Some results on sojourn times in cyclic Jackson networks. Management Science 25, 1027– 1034. CrossrefWeb of Science®Google Scholar Smith, W. L. 1953. On the distribution of queueing times. Proceedings of the Cambridge Philosophical Society 49, 449– 461. CrossrefPubMedWeb of Science®Google Scholar Smith, W. L. 1959. On the cumulants of renewal processes. Biometrika 46, 1– 29. CrossrefWeb of Science®Google Scholar Sobel, M. J. 1969. Optimal average cost policy for a queue with start-up and shut-down costs. Operations Research 17, 145– 162. CrossrefWeb of Science®Google Scholar Sobel, M. J. 1974. Optimal operation of queues. In Mathematical Methods in Queueing Theory, A. B. Clarke, Ed. Lecture Notes in Economics and Mathematical Systems 98. Springer-Verlag, Berlin, 231– 236. CrossrefGoogle Scholar Stehfest, H. 1970. Algorithm 368. Numerical inversion of Laplace transforms [D5]. Communications of the ACM 13, 1, 47– 49. CrossrefWeb of Science®Google Scholar Stephens, M. A. 1974. Edf statistics for goodness of fit and some comparisons. Journal of the American Statistical Association 69, 730– 737. CrossrefWeb of Science®Google Scholar Stidham, S., J. 1970. On the optimality of single-server queuing systems. Operations Research 18, 708– 732. CrossrefWeb of Science®Google Scholar Stidham, S., J. 1982. Optimal control of arrivals to queues and network of queues. In 21st IEEE Conference on Decision and Control. IEEE. in Orlando, FL. Google Scholar Stidham, S., J. and Prabhu, N. U. 1974. Optimal control of queueing systems. In Mathematical Methods in Queueing Theory, A. B. Clarke, Ed. Lecture Notes in Economics and Mathematical Systems 98. Springer-Verlag, Berline, 263– 294. CrossrefGoogle Scholar Suresh, S. and Whitt, W. 1990. The heavy-traffic bottleneck phenomenon in open queueing networks. Operations Research Letters 9, 355– 362. CrossrefWeb of Science®Google Scholar Swain, J. J. 2005. “Gaming” reality: biennial survey of discrete-event simulation software tools. ORMS Today 32, 6, 44– 55. Google Scholar Takács, L. 1962. Introduction to the Theory of Queues. Oxford University Press, Oxford, England. Web of Science®Google Scholar Takács, L. 1969. On Erlang's formula. The Annals of Mathematical Statistics 40, 71– 78. CrossrefWeb of Science®Google Scholar van Dijk, N. M. 1993. Queueing Networks and Product Forms: A Systems Approach. Wiley, New York. Google Scholar Vaulot, A. E. 1927. Extension des formules d'erlang au cas où les durées des conversations suivent une loi quelconque. Rev. G\'e\n. Electricit\'e\ 22, 1164– 1171. Google Scholar Walrand, J. 1988. An Introduction to Queueing Networks. Prentice Hall, Englewood Cliffs, NJ. Google Scholar Weeks, W. T. 1966. Numerical inversion of Laplace transforms using Laguerre functions. Journal of ACM 13, 419– 426. CrossrefWeb of Science®Google Scholar Welch, P. D. 1983. The statistical analysis of simulation results. In The Computer Performance Modeling Handbook, S. S. Lavenberg, Ed. Academic Press, New York. Google Scholar White, H. and Christie, L. S. 1958. Queuing with preemptive priorities or with breakdown. Operations Research 6, 1, 79– 95. CrossrefPubMedWeb of Science®Google Scholar Whitt, W. 1974. The continuity of queues. Advances in Applied Probability 6, 175– 183. CrossrefGoogle Scholar Whitt, W. 1982. Approximating a point process by a renewal process, I: Two basic methods. Operations Research 30, 1, 125– 147. CrossrefWeb of Science®Google Scholar Whitt, W. 1983. The queueing network analyzer. The Bell System Technical Journal 62, 9, 2779– 2815. Wiley Online LibraryWeb of Science®Google Scholar Whitt, W. 1984. Approximations for departure processes and queues in series. Naval Research Logistics Quarterly 31, 499– 521. Wiley Online LibraryWeb of Science®Google Scholar Whitt, W. 1995. Variability functions for parametric-decomposition approximations of queueing networks. Management Science 41, 1704– 1715. CrossrefWeb of Science®Google Scholar Wimp, J. 1981. Sequence Transformations and Their Applications. Academic Press, New York. Google Scholar Wolff, R. W. 1965. Problems of statistical inference for birth and death queuing models. Operations Research 13, 343– 357. CrossrefWeb of Science®Google Scholar Wolff, R. W. 1989. Stochastic Modeling and the Theory of Queues. Prentice Hall, Englewood Cliffs, NJ. Google Scholar Yadin, M. and Naor, P. 1967. On queueing systems with variable service capacities. Naval Research Logistics Quarterly 14, 43– 54. Wiley Online LibraryWeb of Science®Google Scholar Zakian, V. 1969. Numerical inversion of Laplace transform. Electronics Letters 5, 120– 121. CrossrefWeb of Science®Google Scholar Zakian, V. 1970. Optimisation of numerical inversion of Laplace transforms. Electronics Letters 6, 677– 679. CrossrefWeb of Science®Google Scholar Zakian, V. 1973. Properties of iMN approximants. In Padé Approximants and their Applications, P. R. Graves-Morris, Ed. Academic Press, New York, 141– 144. Google Scholar Fundamentals of Queueing Theory, Fourth Edition ReferencesRelatedInformation

Referência(s)