Capítulo de livro Acesso aberto Revisado por pares

References

2015; Multidisciplinary Digital Publishing Institute; Linguagem: Inglês

10.1128/9781555819316.refs

ISSN

2079-6382

Autores

Christopher T. Walsh, Timothy A. Wencewicz,

Tópico(s)

Biochemical and Molecular Research

Resumo

Free Access References Christopher Walsh, Christopher Walsh ChEM-H Institute, Standford UniversitySearch for more papers by this author Book Editor(s):Christopher Walsh, Christopher Walsh ChEM-H Institute, Standford UniversitySearch for more papers by this authorTimothy Wencewicz, Timothy Wencewicz Department of Chemistry, Washington University in st. LouisSearch for more papers by this author First published: 14 December 2015 https://doi.org/10.1128/9781555819316.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Abouhamad WN, Manson M, Gibson MM, Higgins CF. 1991. Peptide transport and chemotaxis in Escherichia coli and Salmonella typhimurium: characterization of the dipeptide permease (Dpp) and the dipeptide-binding protein. Mol Microbiol 5: 1035– 1047. Abraham EP. 1987. Cephalosporins 1945–1986. Drugs 34(Suppl 2): 1– 14. Acebron I, Chang M, Mobashery S, Hermoso JA. 2015. The allosteric site for the nascent cell wall in penicillin-binding protein 2a: an Achilles' heel of methicillin-resistant Staphylococcus aureus . Curr Med Chem 22: 1678– 1686. Achari A, Somers DO, Champness JN, Bryant PK, Rosemond J, Stammers DK. 1997. Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat Struct Biol 4: 490– 497. Ackermann G, Rodloff AC. 2003. Drugs of the 21st century: telithromycin (HMR 3647)—the first ketolide. J Antimicrob Chemother 51: 497– 511. Adams DW, Errington J. 2009. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7: 642– 653. Adnan S, Paterson DL, Lipman J, Roberts JA. 2013. Ampicillin/sulbactam: its potential use in treating infections in critically ill patients. Int J Antimicrob Agents 42: 384– 389. Alexeeva S, Gadella TW Jr, Verheul J, Verhoeven GS, den Blaauwen T. 2010. Direct interactions of early and late assembling division proteins in Escherichia coli cells resolved by FRET. Mol Microbiol 77: 384– 398. Allington DR, Rivey MP. 2001. Quinupristin/dalfopristin: a therapeutic review. Clin Ther 23: 24– 44. American Chemical Society. 1999. Discovery and development of penicillin: international historic chemical landmark. American Chemical Society, Washington, DC. http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/flemingpenicillin.html. Anderson RJ, Groundwater PW, Todd A, Worsley AJ. 2012. Antibacterial Agents: Chemistry, Mode of Action, Mechanisms of Resistance and Clinical Applications. John Wiley & Sons, Ltd, Chichester, United Kingdom. Andries K, Verhasselt P, Guillemont J, Gohlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, de Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V. 2005. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307: 223– 227. Andriole VT. 2005. The quinolones: past, present, and future. Clin Infect Dis 41(Suppl 2): S113– S119. Angehrn P, Goetschi E, Gmuender H, Hebeisen P, Hennig M, Kuhn B, Luebbers T, Reindl P, Ricklin F, Schmitt-Hoffmann A. 2011. A new DNA gyrase inhibitor subclass of the cyclothialidine family based on a bicyclic dilactam-lactone scaffold. Synthesis and antibacterial properties. J Med Chem 54: 2207– 2224. Arias CA, Murray BE. 2015. A new antibiotic and the evolution of resistance. N Engl J Med 372: 1168– 1170. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJ, Rebuffat S, Ross RP, Sahl HG, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang GL, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA. 2013. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30: 108– 160. Atherton FR, Hall MJ, Hassall CH, Lambert RW, Lloyd WJ, Ringrose PS. 1979. Phosphonopeptides as antibacterial agents: mechanism of action of alaphosphin. Antimicrob Agents Chemother 15: 696– 705. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 2006.0008. doi:10.1038/msb4100050. Babaoglu K, Qi J, Lee RE, White SW. 2004. Crystal structure of 7,8-dihydropteroate synthase from Bacillus anthracis: mechanism and novel inhibitor design. Structure 12: 1705– 1717. Baca AM, Sirawaraporn R, Turley S, Sirawaraporn W, Hol WG. 2000. Crystal structure of Mycobacterium tuberculosis 7,8-dihydropteroate synthase in complex with pterin monophosphate: new insight into the enzymatic mechanism and sulfa-drug action. J Mol Biol 302: 1193– 1212. Bachmann BO, Li R, Townsend CA. 1998. β-Lactam synthetase: a new biosynthetic enzyme. Proc Natl Acad Sci U S A 95: 9082– 9086. Bahar AA, Ren D. 2013. Antimicrobial peptides. Pharmaceuticals (Basel) 6: 1543– 1575. Bai H, Zhou Y, Hou Z, Xue X, Meng J, Luo X. 2011. Targeting bacterial RNA polymerase: promises for future antisense antibiotics development. Infect Disord Drug Targets 11: 175– 187. Baldwin JE, Bradley M. 1990. Isopenicillin N synthase: mechanistic studies. Chem Rev 90: 1079– 1088. Baldwin JE, Adlington RM, Mitchell MB. 1995. Stereocontrolled enantiospecific synthesis of anticapsin. Tetrahedron 51: 5193– 5206. Balibar CJ, Howard-Jones AR, Walsh CT. 2007. Terrequinone A biosynthesis through l-tryptophan oxidation, dimerization and bisprenylation. Nat Chem Biol 3: 584– 592. Balibar CJ, Vaillancourt FH, Walsh CT. 2005. Generation of d amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. Chem Biol 12: 1189– 1200. Ball P. 2000. Quinolone generations: natural history or natural selection? J Antimicrob Chemother 46(Suppl T1): 17– 24. Baltz R. 2007. Antimicrobials from actinomycetes: back to the tuture. Microbe 2: 125– 129. Baltz RH. 2009. Daptomycin: mechanisms of action and resistance, and biosynthetic engineering. Curr Opin Chem Biol 13: 144– 151. Baltz RH, Miao V, Wrigley SK. 2005. Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat Prod Rep 22: 717– 741. Banik JJ, Brady SF. 2008. Cloning and characterization of new glycopeptide gene clusters found in an environmental DNA megalibrary. Proc Natl Acad Sci U S A 105: 17273– 17277. Banzhaf M, van den Berg van Saparoea B, Terrak M, Fraipont C, Egan A, Philippe J, Zapun A, Breukink E, Nguyen-Distèche M, den Blaauwen T, Vollmer W. 2012. Cooperativity of peptidoglycan synthases active in bacterial cell elongation. Mol Microbiol 85: 179– 194. Barb AW, Jiang L, Raetz CR, Zhou P. 2007a. Structure of the deacetylase LpxC bound to the antibiotic CHIR-090: time-dependent inhibition and specificity in ligand binding. Proc Natl Acad Sci U S A 104: 18433– 18438. Barb AW, Leavy TM, Robins LI, Guan Z, Six DA, Zhou P, Hangauer MJ, Bertozzi CR, Raetz CR. 2009. Uridine-based inhibitors as new leads for antibiotics targeting Escherichia coli LpxC. Biochemistry 48: 3068– 3077. Barb AW, McClerren AL, Snehelatha K, Reynolds CM, Zhou P, Raetz CR. 2007b. Inhibition of lipid A biosynthesis as the primary mechanism of CHIR-090 antibiotic activity in Escherichia coli . Biochemistry 46: 3793– 3802. Barry AL, Thornsberry C, Jones RN, Gavan TL. 1985. Aztreonam: antibacterial activity, beta-lactamase stability, and interpretive standards and quality control guidelines for disk-diffusion susceptibility tests. Rev Infect Dis 7(Suppl 4): S594– S604. Batt SM, Jabeen T, Bhowruth V, Quill L, Lund PA, Eggeling L, Alderwick LJ, Fütterer K, Besra GS. 2012. Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proc Natl Acad Sci U S A 109: 11354– 11359. Bauer A, Bronstrup M. 2014. Industrial natural product chemistry for drug discovery and development. Nat Prod Rep 31: 35– 60. Bauer JD, King RW, Brady SF. 2010. Utahmycins A and B, azaquinones produced by an environmental DNA clone. J Nat Prod 73: 976– 979. Baum EZ, Crespo-Carbone SM, Klinger A, Foleno BD, Turchi I, Macielag M, Bush K. 2007. A MurF inhibitor that disrupts cell wall biosynthesis in Escherichia coli . Antimicrob Agents Chemother 51: 4420– 4426. Baumann S, Herrmann J, Raju R, Steinmetz H, Mohr KI, Hüttel S, Harmrolfs K, Stadler M, Müller R. 2014. Cystobactamids: myxobacterial topoisomerase inhibitors exhibiting potent antibacterial activity. Angew Chem Int Ed Engl 53: 14605– 14609. Bax BD, Chan PF, Eggleston DS, Fosberry A, Gentry DR, Gorrec F, Giordano I, Hann MM, Hennessy A, Hibbs M, Huang J, Jones E, Jones J, Brown KK, Lewis CJ, May EW, Saunders MR, Singh O, Spitzfaden CE, Shen C, Shillings A, Theobald AJ, Wohlkonig A, Pearson ND, Gwynn MN. 2010. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 466: 935– 940. Bayer AS, Schneider T, Sahl HG. 2013. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann N Y Acad Sci 1277: 139– 158. Bayer E, Gugel KH, Hägele K, Hagenmaier H, Jessipow S, König WA, Zähner H. 1972. Metabolic products of microorganisms. 98. Phosphinothricin and phosphinothricyl-alanyl-analine. Helv Chim Acta 55: 224– 239. (In German.) Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. 2014. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 31: 61– 108. Bennett BC, Wan Q, Ahmad MF, Langan P, Dealwis CG. 2009. X-ray structure of the ternary MTX.NADPH complex of the anthrax dihydrofolate reductase: a pharmacophore for dual-site inhibitor design. J Struct Biol 166: 162– 171. Benson TE, Prince DB, Mutchler VT, Curry KA, Ho AM, Sarver RW, Hagadorn JC, Choi GH, Garlick RL. 2002. X-ray crystal structure of Staphylococcus aureus FemA. Structure 10: 1107– 1115. Benson TE, Walsh CT, Hogle JM. 1997. X-ray crystal structures of the S229A mutant and wild-type MurB in the presence of the substrate enolpyruvyl- UDP-N-acetylglucosamine at 1.8-Å resolution. Biochemistry 36: 806– 811. Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141– 147. Benveniste R, Davies J. 1973. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci U S A 70: 2276– 2280. Berdy J. 2005. Bioactive microbial metabolites. J Antibiot (Tokyo) 58: 1– 26. Berdy J. 2012. Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot (Tokyo) 65: 385– 395. Bermingham A, Derrick JP. 2002. The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. Bioessays 24: 637– 648. Biarrotte-Sorin S, Maillard AP, Delettré J, Sougakoff W, Arthur M, Mayer C. 2004. Crystal structures of Weissella viridescens FemX and its complex with UDP-MurNAc-pentapeptide: insights into FemABX family substrates recognition. Structure 12: 257– 267. Biggins JB, Ternei MA, Brady SF. 2012. Malleilactone, a polyketide synthase-derived virulence factor encoded by the cryptic secondary metabolome of Burkholderia pseudomallei group pathogens. J Am Chem Soc 134: 13192– 13195. Bihelovic F, Karadzic I, Matovic R, Saicic RN. 2013. Total synthesis and biological evaluation of (–)-atrop-abyssomicin C. Org Biomol Chem 11: 5413– 5424. Bihelovic F, Saicic RN. 2012. Total synthesis of (–)-atrop-abyssomicin C. Angew Chem Int Ed Engl 51: 5687– 5691. Biliouris K, Daoutidis P, Kaznessis YN. 2011. Stochastic simulations of the tetracycline operon. BMC Syst Biol 5: 9. doi:10.1186/1752-0509-5-9. Birnbaum J, Kahan FM, Kropp H, MacDonald JS. 1985. Carbapenems, a new class of beta-lactam antibiotics. Discovery and development of imipenem/cilastatin. Am J Med 78: 3– 21. Bischoff D, Pelzer S, Höltzel A, Nicholson GJ, Stockert S, Wohlleben W, Jung G, Süssmuth RD. 2001. The biosynthesis of vancomycin-type glycopeptide antibiotics—new insights into the cyclization steps. Angew Chem Int Ed Engl 40: 1693– 1696. Bister B, Bischoff D, Ströbele M, Riedlinger J, Reicke A, Wolter F, Bull AT, Zähner H, Fiedler HP, Süssmuth RD. 2004. Abyssomicin C-A polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew Chem Int Ed Engl 43: 2574– 2576. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. 2015. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13: 42– 51. Blanco D, Perez-Herran E, Cacho M, Ballell L, Castro J, González Del Río R, Lavandera JL, Remuiñán MJ, Richards C, Rullas J, Vázquez-Muñiz MJ, Woldu E, Zapatero-González MC, Angulo-Barturen I, Mendoza A, Barros D. 2015. Mycobacterium tuberculosis gyrase inhibitors as a new class of antitubercular drugs. Antimicrob Agents Chemother 59: 1868– 1875. Blázquez B, Llarrull LI, Luque-Ortega JR, Alfonso C, Boggess B, Mobashery S. 2014. Regulation of the expression of the β-lactam antibiotic-resistance determinants in methicillin-resistant Staphylococcus aureus (MRSA). Biochemistry 53: 1548– 1550. Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T. 2013. antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41(Web Server issue): W204– W212. Bock C, Lengauer T. 2012. Managing drug resistance in cancer: lessons from HIV therapy. Nat Rev Cancer 12: 494– 501. Boddy CN, Schneider TL, Hotta K, Walsh CT, Khosla C. 2003. Epothilone C macrolactonization and hydrolysis are catalyzed by the isolated thioesterase domain of epothilone polyketide synthase. J Am Chem Soc 125: 3428– 3429. Boger DL. 2001. Vancomycin, teicoplanin, and ramoplanin: synthetic and mechanistic studies. Med Res Rev 21: 356– 381. Bohn C, Bouloc P. 1998. The Escherichia coli cmlA gene encodes the multidrug efflux pump Cmr/MdfA and is responsible for isopropyl-β-d-thiogalactopyranoside exclusion and spectinomycin sensitivity. J Bacteriol 180: 6072– 6075. Bok JW, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Keller NP. 2005. LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryot Cell 4: 1574– 1582. Bok JW, Keller NP. 2004. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 3: 527– 535. Bonnemain C, Raynaud C, Réglier-Poupet H, Dubail I, Frehel C, Lety MA, Berche P, Charbit A. 2004. Differential roles of multiple signal peptidases in the virulence of Listeria monocytogenes . Mol Microbiol 51: 1251– 1266. Bonnet R. 2004. Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48: 1– 14. Borbulevych O, Kumarasiri M, Wilson B, Llarrull LI, Lee M, Hesek D, Shi Q, Peng J, Baker BM, Mobashery S. 2011. Lysine N ζ-decarboxylation switch and activation of the β-lactam sensor domain of BlaR1 protein of methicillin-resistant Staphylococcus aureus . J Biol Chem 286: 31466– 31472. Borel JF, Kis ZL. 1991. The discovery and development of cyclosporine (Sandimmune). Transplant Proc 23: 1867– 1874. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J. 2009. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48: 1– 12. Bouley R, Kumarasiri M, Peng Z, Otero LH, Song W, Suckow MA, Schroeder VA, Wolter WR, Lastochkin E, Antunes NT, Pi H, Vakulenko S, Hermoso JA, Chang M, Mobashery S. 2015. Discovery of antibiotic (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one. J Am Chem Soc 137: 1738– 1741. Bourne CR. 2014. Utility of the biosynthetic folate pathway for targets in antimicrobial discovery. Antibiotics 3: 1– 28. Bower JM, Eto DS, Mulvey MA. 2005. Covert operations of uropathogenic Escherichia coli within the urinary tract. Traffic 6: 18– 31. Bowers AA, Walsh CT, Acker MG. 2010. Genetic interception and structural characterization of thiopeptide cyclization precursors from Bacillus cereus . J Am Chem Soc 132: 12182– 12184. Braun V, Hantke K. 1974. Biochemistry of bacterial cell envelopes. Annu Rev Biochem 43: 89– 121. Breazeale SD, Ribeiro AA, McClerren AL, Raetz CR. 2005. A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-amino-4-deoxy-l-arabinose. Identification and function of UDP-4-deoxy-4-formamido-l-arabinose. J Biol Chem 280: 14154– 14167. Brennan PJ. 2003. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis . Tuberculosis (Edinb) 83: 91– 97. Breukink E, de Kruijff B. 2006. Lipid II as a target for antibiotics. Nat Rev Drug Discov 5: 321– 332. Brickner S. 1996. Oxazolidinone antibacterial agents. Curr Pharm Des 2: 175– 194. Brock TD, Madigan MT, Martinko JM, Parker J. 1994. Biology of Microorganisms, 7th ed. Prentice-Hall, Inc, Englewood Cliffs, NJ. Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3: 238– 250. Brown ED, Vivas EI, Walsh CT, Kolter R. 1995. MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli . J Bacteriol 177: 4194– 4197. Brown MF, Reilly U, Abramite JA, Arcari JT, Oliver R, Barham RA, Che Y, Chen JM, Collantes EM, Chung SW, Desbonnet C, Doty J, Doroski M, Engtrakul JJ, Harris TM, Huband M, Knafels JD, Leach KL, Liu S, Marfat A, Marra A, McElroy E, Melnick M, Menard CA, Montgomery JI, Mullins L, Noe MC, O'Donnell J, Penzien J, Plummer MS, Price LM, Shanmugasundaram V, Thoma C, Uccello DP, Warmus JS, Wishka DG. 2012. Potent inhibitors of LpxC for the treatment of Gram-negative infections. J Med Chem 55: 914– 923. Brown RC, Hopps HC. 1973. Staining of bacteria in tissue sections: a reliable gram stain method. Am J Clin Pathol 60: 234– 240. Brown RP, Aplin RT, Schofield CJ. 1996. Inhibition of TEM-2 β-lactamase from Escherichia coli by clavulanic acid: observation of intermediates by electrospray ionization mass spectrometry. Biochemistry 35: 12421– 12432. Brubaker JD, Myers AG. 2007. A practical, enantioselective synthetic route to a key precursor to the tetracycline antibiotics. Org Lett 9: 3523– 3525. Bryk R, Gold B, Venugopal A, Singh J, Samy R, Pupek K, Cao H, Popescu C, Gurney M, Hotha S, Cherian J, Rhee K, Ly L, Converse PJ, Ehrt S, Vandal O, Jiang X, Schneider J, Lin G, Nathan C. 2008. Selective killing of nonreplicating mycobacteria. Cell Host Microbe 3: 137– 145. Bugg TD, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT. 1991a. Identification of vancomycin resistance protein VanA as a d-alanine:d-alanine ligase of altered substrate specificity. Biochemistry 30: 2017– 2021. Bugg TD, Wright GD, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT. 1991b. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30: 10408– 10415. Bull AT, Stach JE. 2007. Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15: 491– 499. Bulychev A, Mobashery S. 1999. Class C β-lactamases operate at the diffusion limit for turnover of their preferred cephalosporin substrates. Antimicrob Agents Chemother 43: 1743– 1746. Bunkoczi G, Vertesy L, Sheldrick GM. 2005. Structure of the lipopeptide antibiotic tsushimycin. Acta Crystallogr D Biol Crystallogr 61: 1160– 1164. Burman W, Dooley KE, Nuermberger EL. 2011. The rifamycins: renewed interest in an old drug class, pp 18– 24. In PR Donald, PD Helden (ed), Antituberculosis Chemotherapy, vol 40. Karger, Basel, Switzerland. Burzlaff NI, Rutledge PJ, Clifton IJ, Hensgens CM, Pickford M, Adlington RM, Roach PL, Baldwin JE. 1999. The reaction cycle of isopenicillin N synthase observed by X-ray diffraction. Nature 401: 721– 724. Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby GA, Kishony R, Kreiswirth BN, Kutter E, Lerner SA, Levy S, Lewis K, Lomovskaya O, Miller JH, Mobashery S, Piddock LJ, Projan S, Thomas CM, Tomasz A, Tulkens PM, Walsh TR, Watson JD, Witkowski J, Witte W, Wright G, Yeh P, Zgurskaya HI. 2011. Tackling antibiotic resistance. Nat Rev Microbiol 9: 894– 896. Bush K, Jacoby GA. 2010. Updated functional classification of β-lactamases. Antimicrob Agents Chemother 54: 969– 976. Bush K, Jacoby GA, Medeiros AA. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39: 1211– 1233. Bush K, Mobashery S. 1998. How beta-lactamases have driven pharmaceutical drug discovery. From mechanistic knowledge to clinical circumvention. Adv Exp Med Biol 456: 71– 98. Busiek KK, Eraso JM, Wang Y, Margolin W. 2012. The early divisome protein FtsA interacts directly through its 1c subdomain with the cytoplasmic domain of the late divisome protein FtsN. J Bacteriol 194: 1989– 2000. Butler MS, Blaskovich MA, Cooper MA. 2013. Antibiotics in the clinical pipeline in 2013. J Antibiot (Tokyo) 66: 571– 591. Butler MS, Cooper MA. 2011. Antibiotics in the clinical pipeline in 2011. J Antibiot (Tokyo) 64: 413– 425. Butler MS, Hansford KA, Blaskovich MA, Halai R, Cooper MA. 2014. Glycopeptide antibiotics: back to the future. J Antibiot (Tokyo) 67: 631– 644. Butler SM, Festa RA, Pearce MJ, Darwin KH. 2006. Self-compartmentalized bacterial proteases and pathogenesis. Mol Microbiol 60: 553– 562. Cabeen MT, Jacobs-Wagner C. 2005. Bacterial cell shape. Nat Rev Microbiol 3: 601– 610. Campbell EA, Pavlova O, Zenkin N, Leon F, Irschik H, Jansen R, Severinov K, Darst SA. 2005. Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase. EMBO J 24: 674– 682. Campbell J, Singh AK, Santa Maria JP Jr, Kim Y, Brown S, Swoboda JG, Mylonakis E, Wilkinson BJ, Walker S. 2011. Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus . ACS Chem Biol 6: 106– 116. Cane DE, Walsh CT. 1999. The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chem Biol 6: R319– R325. Cane DE, Walsh CT, Khosla C. 1998. Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282: 63– 68. Canton R, Coque TM. 2006. The CTX-M β-lactamase pandemic. Curr Opin Microbiol 9: 466– 475. Canton R, Gonzalez-Alba JM, Galan JC. 2012. CTX-M enzymes: origin and diffusion. Front Microbiol 3: 110. doi:10.3389/fmicb.2012.00110. Cantu C III, Huang W, Palzkill T. 1997. Cephalosporin substrate specificity determinants of TEM-1 β-lactamase. J Biol Chem 272: 29144– 29150. Carfi A, Pares S, Duée E, Galleni M, Duez C, Frère JM, Dideberg O. 1995. The 3-D structure of a zinc metallo-β-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J 14: 4914– 4921. Carreras C, Santi D. 1995. The catalytic mechanism and structure of thymidylate synthase. Annu Rev Biochem 64: 721– 762. Castiglione F, Lazzarini A, Carrano L, Corti E, Ciciliato I, Gastaldo L, Candiani P, Losi D, Marinelli F, Selva E, Parenti F. 2008. Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. Chem Biol 15: 22– 31. Cavalleri B, Pagani H, Volpe G, Selva E, Parenti F. 1984. A-16686, a new antibiotic from Actinoplanes. I. Fermentation, isolation and preliminary physico-chemical characteristics. J Antibiot (Tokyo) 37: 309– 317. Centers for Disease Control and Prevention. 2013. Antibiotic Resistance Threats in the United States, 2013. Centers for Disease Control and Prevention, Atlanta, GA. http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf. Cetinkaya Y, Falk P, Mayhall CG. 2000. Vancomycin-resistant enterococci. Clin Microbiol Rev 13: 686– 707. Chairatana P, Nolan EM. 2014. Molecular basis for self-assembly of a human host-defense peptide that entraps bacterial pathogens. J Am Chem Soc 136: 13267– 13276. Chait R, Shrestha S, Shah AK, Michel JB, Kishony R. 2010. A differential drug screen for compounds that select against antibiotic resistance. PLoS One 5: e15179. doi:10.1371/journal.pone.0015179. Chait R, Vetsigian K, Kishony R. 2012. What counters antibiotic resistance in nature? Nat Chem Biol 8: 2– 5. Chan YY, Bian HS, Tan TM, Mattmann ME, Geske GD, Igarashi J, Hatano T, Suga H, Blackwell HE, Chua KL. 2007. Control of quorum sensing by a Burkholderia pseudomallei multidrug efflux pump. J Bacteriol 189: 4320– 4324. Chang FY, Ternei MA, Calle PY, Brady SF. 2015. Targeted metagenomics: finding rare tryptophan dimer natural products in the environment. J Am Chem Soc 137: 6044– 6052. Chang WC, Dey M, Liu P, Mansoorabadi SO, Moon SJ, Zhao ZK, Drennan CL, Liu HW. 2013. Mechanistic studies of an unprecedented enzyme-catalysed 1,2-phosphono-migration reaction. Nature 496: 114– 118. Chang WC, Guo Y, Wang C, Butch SE, Rosenzweig AC, Boal AK, Krebs C, Bollinger JM Jr. 2014. Mechanism of the C5 stereoinversion reaction in the biosynthesis of carbapenem antibiotics. Science 343: 1140– 1144. Charest MG, Lerner CD, Brubaker JD, Siegel DR, Myers AG. 2005a. A convergent enantioselective route to structurally diverse 6-deoxytetracycline antibiotics. Science 308: 395– 398. Charest MG, Siegel DR, Myers AG. 2005b. Synthesis of (–)-tetracycline. J Am Chem Soc 127: 8292– 8293. Chater KF. 2006. Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philos Trans R Soc Lond B Biol Sci 361: 761– 768. Chater KF, Horinouchi S. 2003. Signalling early developmental events in two highly diverged Streptomyces species. Mol Microbiol 48: 9– 15. Chen DZ, Patel DV, Hackbarth CJ, Wang W, Dreyer G, Young DC, Margolis PS, Wu C, Ni ZJ, Trias J, White RJ, Yuan Z. 2000a. Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 39: 1256– 1262. Chen H, Thomas MG, Hubbard BK, Losey HC, Walsh CT, Burkart MD. 2000b. Deoxysugars in glycopeptide antibiotics: enzymatic synthesis of TDP-l-epivancosamine in chloroeremomycin biosynthesis. Proc Natl Acad Sci U S A 97: 11942– 11947. Chen H, Thomas MG, O'Connor SE, Hubbard BK, Burkart MD, Walsh CT. 2001. Aminoacyl-S-enzyme intermediates in β-hydroxylations and α,β-desaturations of amino acids in peptide antibiotics. Biochemistry 40: 11651– 11659. Chen MW, Lohkamp B, Schnell R, Lescar J, Schneider G. 2013. Substrate channel flexibility in MurB accommodates two distinct substrates. PLoS One 8: e66936. doi:10.1371/journal.pone.0066936. Chen Y, Yin M, Horsman GP, Huang S, Shen B. 2010. Manipulation of pathway regulation in Streptomyces globisporus for o

Referência(s)
Altmetric
PlumX