Peptide and glycopeptide dendrimers. Part I
1999; Wiley; Volume: 5; Issue: 1 Linguagem: Dinamarquês
10.1002/(sici)1099-1387(199901)5
ISSN1099-1387
Autores Tópico(s)Chemical Synthesis and Analysis
ResumoJournal of Peptide ScienceVolume 5, Issue 1 p. 5-23 Review Article Peptide and glycopeptide dendrimers. Part I Pavel Vepřek, Pavel Vepřek Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech RepublicSearch for more papers by this authorJan Ježek, Corresponding Author Jan Ježek [email protected] Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech RepublicInstitute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech RepublicSearch for more papers by this author Pavel Vepřek, Pavel Vepřek Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech RepublicSearch for more papers by this authorJan Ježek, Corresponding Author Jan Ježek [email protected] Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech RepublicInstitute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech RepublicSearch for more papers by this author First published: 23 June 1999 https://doi.org/10.1002/(SICI)1099-1387(199901)5:1 3.0.CO;2-RCitations: 44AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Recent progress in peptide and glycopeptide chemistry make the preparation of peptide and glycopeptide dendrimers of acceptable purity, with designed structural and immunochemical properties reliable. New methodologies using unprotected peptide building blocks have been developed to further increase possibilities of their design and improve their preparation and separation. Sophisticated design of peptide and glycopeptide dendrimers has led to their use as antigens and immunogens, for serodiagnosis and other biochemical uses including drug delivery. Dendrimers bearing peptide with predetermined secondary structures are useful tools in protein de novo design. This article covers synthesis and applications of multiple antigen peptides (MAPs), multiple antigen glycopeptides (MAGs), multiple antigen peptides based on sequential oligopeptide carriers (MAP-SOCs), glycodendrimers and template-assembled synthetic proteins (TASPs). Part I deals with the development of various structural forms of MAPs as well as their application as antigens, immunogens, and for immunodiagnostic and biochemical purposes. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd. REFERENCES 1J.M.J. Fréchet (1994). Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 263, 1710–1715.Medline 2D.A. Tomalia and H.D. Durst (1993). Genealogically directed synthesis: starburst/cascade dendrimers and hyperbranched structures. Top. Curr. Chem. 165, 193–313. 3H.-B. Mekelburger, W. Jaworek and F. Vögtle (1992). Dendrimers, arborols and cascade molecules: breakthrough into generations of new materials. Angew. Chem. Int. Ed. Engl. 31, 1571–1576. 4N.N. Androin and D. Astruc (1995). Molecular trees — from syntheses towards applications. Bull. Soc. Chim. Fr. 132, 875–909. 5D.A. Tomalia, A.M. Naylor and W.A. Goddard (1990). Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. Engl. 29, 138–175. 6S.C. Stinson (1997). Delving into dendrimers. Chem. Eng. News 75, 28–30. 7J.M. Lehn (1990). Perspectives in supramolecular chemistry — from molecular recognition towards molecular information processing and self-organization. Angew. Chem. Int. Ed. Engl. 29, 1304–1319. 8J.M. Lehn (1994). Perspectives in supramolecular chemistry — from molecular recognition towards self-organisation. Pure Appl. Chem. 66, 1961–1966. 9E. Buhleier, W. Wehner and F. Vögtle (1978). 'Cascade-' and 'Nonskid-Chain-like' syntheses of molecular cavity topologies. Synthesis, 155–158. 10C.J. Hawker, K.L. Wooley and J.M.J. Fréchet (1993). Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents. J. Chem. Soc., Perkin Trans. I, 1287–1297. 11S. Mattei, P. Seiler, F. Diederich and W. Gramlich (1995). Dendrophanes: water-soluble dendritic receptors. Helv. Chim. Acta 78, 1904–1912. 12G.R. Newkome, R. Güther, C.N. Moorefield, F. Cardullo, L. Echegoyen, E. Pérez-Cordero and H. Luftmann (1995). Routes to dendritic networks: bis-dendimers by coupling of cascade macromolecules through metal centers. Angew. Chem. Int. Ed. Engl. 34, 2023–2026. 13T. Nagasaki, O. Kimura, M. Ukon, S. Arimori, I. Hamachi and S. Shinkai (1994). Synthesis, metal-binding properties and polypeptide solubilization of 'crowned' arborols. J. Chem. Soc., Perkin Trans. I, 75–81. 14J.P. Tam (1988). Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc. Natl. Acad. Sci. USA 85, 5409–5413.Medline 15R. Roy (1996). Glycodendrimers: a new class of biopolymers. Polymer News 21, 226–232. 16G.R. Newkome, F. Cardullo, E.C. Constable, C.N. Moorefield and A.M.W. Cargill-Thompson (1993). Metallomicellanols: incorporation of ruthenium(II)-2,2′:6′,2″-terpyridine triads into cascade polymers. J. Chem. Soc., Chem. Commun., 925–927. 17E.C. Constable (1991). Helices, supramolecular chemistry and metal-directed self-assembly. Angew. Chem. Int. Ed. Engl. 30, 1450–1451. 18J.W. Knapen, A.W. van der Made, J.C. de Wilde, P.W.N.M. van Leeuwen, P. Wijkens, D.M. Grove and G. van Koten (1994). Homogenous catalysts based on silane dendrimers functionalized with arylnickel(II) complexes. Nature 372, 659–663. 19K.L. Wooley (1997). From dendrimers to knedel-like structures. Chem. Eur. J. 3, 1397–1399. 20F. Zeng and S.C. Zimmerman (1997). Dendrimers in supramolecular chemistry: from molecular recognition to self-assembly. Chem. Rev. 97, 1681–1712. 21G.R. Newkome, C.N. Moorefield and F. Vögtle (1996). Dendritic Macromolecules: Concepts, Syntheses, Perspectives, VCH, Weinheim, Germany. 22M. Mutter, E. Altmann, K.-H. Altmann, R. Hersperger, P. Koziej, K. Nebel, G. Tuchscherer and S. Vuilleumier (1988). The construction of new proteins. Part III. Artificial folding units by assembly of amphiphilic secondary structures on a template. Helv. Chim. Acta 71, 835–847. 23R.G. Denkewalter, J.F. Kolc and W.J. Lukasavage, US Pat. 4410688 (1983); Chem. Abstr. 100, (1984) 103 907 p. 24D.N. Posnett, H. McGrath and J.P. Tam (1988). A novel method for producing anti-peptide antibodies. J. Biol. Chem. 263, 1719–1725.Medline 25J. Ježek, J. Velek, T. Trnka and M. Písa Solid phase synthesis of Tn antigens in both free and immobilized form, in: Innovation and Perspectives in Solid Phase Synthesis and Combinatorial Libraries 1995, R. Epton, Ed., p. 427–428, Mayflower Scientific Ltd., Birmingham, 1997. 26S. Bay, R. Lo-man, E. Osinaga, H. Nakada, C. Leclerc and D. Cantacuzéne (1997). Preparation of a multiple antigen glycopeptide (MAG) carrying the Tn antigen. J. Peptide Res. 49, 620–625.Medline 27V. Tsikaris, C. Sakarellos, M.T. Cung, M. Marraud and M. Sakarellos-Daitsiotis (1996). Concept and design of a new class of sequential oligopeptide carriers (SOC) for covalent attachment of multiple antigenic peptides. Biopolymers 38, 291–293.Medline 28M. Mutter and S. Vuilleumier (1989). A chemical approach to protein design-template-assembled synthetic proteins (TASP). Angew. Chem. Int. Ed. Engl. 28, 535–554. 29P. Dumy, I.M. Eggleston, S. Cervigni, U. Sila, X. Sun and M. Mutter (1995). A convenient synthesis of cyclic peptides as regioselectively addressable functionalized templates (RAFT). Tetrahedron Lett. 36, 1255–1258. 30R.A. Lerner (1982). Tapping the immunological repertoire to produce antibodies of predetermined specificity. Nature 299, 593–596.Medline 31J.G. Sutcliffe, T.M. Shinnick, N. Green and R.A. Lerner (1983). Antibodies that react with predetermined sites on proteins. Science 219, 660–666.Medline 32R. Arnon, E. Maron, M. Sela and C.B. Anfinsen (1971). Antibodies reactive with native lysozyme elicited by a completely synthetic antigen. Proc. Natl. Acad. Sci. USA 68, 1450–1455.Medline 33R.M. Hoksinson, R.D.G. Rigby, P.E. Mattner, V.L. Hyunh, M. D'Occhio, A. Neish, T.E. Trigg, B.A. Moss, M.J. Lindsey, G.D. Coleman and C.L. Schwartzkopf (1990). Vaxstrate: an anti-reproductive vaccine for cattle. Aust. J. Biotechnol. 4, 166–170.Medline 34M. Valero, L.R. Amador, C. Galindo, J. Figueroa, M.S. Bello, L.A. Murillo, A.L. Mora, G. Patarroyo, C.L. Rocha and M. Rojas (1993). Vaccination with SPf66, a chemically synthesised vaccine, against Plasmodium falciparum malaria in Colombia. Lancet 341, 705–710.Medline 35P.R. Hansen, H. Flyge, A. Holm, E. Lauritzen and B.D. Larsen (1996). Photochemical conjugation of peptides to carrier proteins using 1,2,3-thiadiazole-4-carboxylic acid. Int. J. Peptide Protein Res. 47 419–426.Medline 36G. Walter, K.H. Scheidtmann, A. Carbone, A.P. Laudano and R.F. Doolittle (1980). Antibodies specific for the carboxy- and amino-terminal regions of simian virus 40 large tumor antigen. Proc. Natl. Acad. Sci. USA 77, 5197–5120.Medline 37A.R. Neurath, S.B. Kent and N. Strick (1982). Specificity of antibodies elicited by a synthetic peptide having a sequence in common with a fragment of a virus protein, the hepatitis B surface antigen. Proc. Natl. Acad. Sci. USA 79, 7871–7875.Medline 38C.O. Jacob, R. Arnon and M.J. Sela (1985). Effect of carrier on the immunogenic capacity of synthetic cholera vaccine. Mol. Immunol. 22, 1333–1339.Medline 39G.H. Cohen, B. Dietzschold, M. Ponce de Leon, D. Long, E. Golub, A. Varrichio, L. Pereira and R.J. Eisenberg (1984). Localization and synthesis of an antigenic determinant of herpes simplex virus glycoprotein D that stimulates the production of neutralizing antibody. J. Virol. 49, 102–108.Medline 40E. Pfaff, M. Mussagy, H.O. Bohm, G.E. Schulz and H. Schaller (1982). Antibodies against a preselected peptide recognize and neutralize foot and mouth disease virus. EMBO J. 1, 869–874.Medline 41J.P. Briand, S. Muller and M.H. Van-Regenmortel (1985). Synthetic peptides as antigens: pitfalls of conjugation methods. J. Immunol. Methods 78, 56–69. 42R. DiMarchi, G. Brooke, C. Gale, V. Cracknell, T. Doel and N. Mowat (1986). Protection of cattle against foot-and-mouth disease by a synthetic peptide. Science 232, 639–641.Medline 43H. MacArthur and G. Walter (1984). Monoclonal antibodies specific for the carboxy terminus of simian virus 40 large T antigen. J. Virol. 52, 483–491.Medline 44D. Di-John, S.S. Wasserman, J.R. Torres, M.J. Cortesia, J. Murillo, G.A. Losonsky, D.A. Herrington, D. Struchrer and M.M. Levine (1989). Effect of priming with carrier on response to conjugate vaccine. Lancet 2, 1415–1418.Medline 45M.P. Schutze, C. LeClerc, F. Jolivet, F. Audibert and L. Chedid (1985). Carrier-induced epitopic suppression, a major issue for future synthetic vaccines. J. Immunol. 135, 2319–2322.Medline 46A. Kumar, R. Arora, P. Kaur, V.S. Chauhan and P. Sharma (1992). 'Universal' T helper cell determinants enhance immunogenicity of a Plasmodium falciparum merozoite surface antigen peptide. J. Immunol. 148, 1499–1505.Medline 47D.M. Shaw, C.M. Stanley, C.D. Partidos and M.W. Steward (1993). Influence of the T-helper epitope on the titre and affinity of antibodies to B-cell epitopes after co-immunization. Mol. Immunol. 30, 961–968.Medline 48P. Sarobe, J.-J. Lasarte, J. Golvano, A. Gullon, M.-P. Civeira, J. Prieto and F. Borrás-Cuesta (1991). Induction of antibodies against a peptide hapten does not require covalent linkage between the hapten and a class II presentable T helper peptide. Eur. J. Immunol. 21, 1555–1558.Medline 49M. Bellone, P.I. Karachunski, N. Ostlie, S. Lei and B.M. Conti-Tronconi (1994). Preferential pairing of T and B cells for production of antibodies without covalent association of T and B epitopes. Eur. J. Immunol. 24, 799–804.Medline 50I. Prieto, S. Hervás-Stubbs, M. García-Granero, C. Berasain, J.I. Riezu-Boj, J.-J. Lasarte, P. Sarobe, J. Prieto and F. Borrás-Cuesta (1995). Simple strategy to induce antibodies of distinct specifity. Application to the mapping of gp120 and inhibition of HIV-1 infectivity. Eur. J. Immunol. 25, 877–883.Medline 51M.J. Francis, G.Z. Hastings, A.D. Syred, B. McGinn, F. Brown and D.J. Rowland (1987). Non-responsiveness to a foot-and-mouth disease virus peptide overcome by addition of foreign helper T-cell determinants. Nature 330, 168–170.Medline 52S. Sad, V.S. Chauhan, K. Arunan and R. Raghupathy (1993). Synthetic gonadotrophin-releasing hormone (GnRH) vaccines incorporating GnRH and synthetic T-helper epitopes. Vaccine 11, 1145–1150.Medline 53M. Srinivasan, S.Z. Domanico, P.T.P. Kaumaya and S.K. Pierce (1993). Peptides of 23 residues or greater are required to stimulate a high affinity class II-restricted T cell response. Eur. J. Immunol. 23, 1011–1016.Medline 54N.D. Zegers, C. van Holten, E. Classen and W.J.A. Boersma (1993). Peptide-induced memory (IgG) response, cross-reactive with native proteins, require covalent linkage of a specific B cell epitope with a T cell epitope. Eur. J. Immunol. 23, 630–634.Medline 55J.J. Golvano, J.J. Lasarte, P. Sarobe, A. Gullon, J. Prieto and F. Borass-Cuesta (1990). Polarity of immunogens: implications for vaccine design. Eur. J. Immunol. 20, 2363–2366.Medline 56C. Partidos, C. Stanley and M. Steward (1992). The effect of orientation of epitopes on the immunogenicity of chimeric synthetic peptides representing measles virus protein sequences. Mol. Immunol. 29, 651–658.Medline 57M.E. Levely, M.A. Mitchell and J.A. Nicholas (1990). Synthetic immunogens constructed from T-cell and B-cell stimulating peptides (T:B chimeras): preferential stimulation of unique T- and B-cell specificities is influenced by immunogen configuration. Cell. Immunol. 125, 65–78.Medline 58F. Ria, B.M.C. Chan, M.T. Scherer, J.A. Smith and M.L. Gefter (1990). Immunological activity of covalently linked T-cell epitopes. Nature 343, 381–383.Medline 59J.P. Tam and F. Zavala (1989). Multiple antigen peptide. A novel approach to increase detection sensitivity of synthetic peptides in solid-phase immunoassays. J. Immunol. Methods 124, 53–61.Medline 60W. Huang, B. Nardelli and J.P. Tam (1994). Lipophilic multiple antigen peptide system for peptide immunogen and synthetic vaccine. Mol. Immunol. 31, 1191–1199.Medline 61J. Bernillon and S.M. Wallach (1993). Design of a new multiple antigen peptide system using 9-fluorenyl-methyloxycarbonyl (Fmoc) strategy. Biotechnol. Tech. 7, 603–608. 62D. Ranganathan, S. Kurur, K.P. Madhusudanan, R. Roy and I.L. Karle (1998). Self-assembling bis-dendritic peptides: design, synthesis and characterization of oxalyl-linked bis-glutamyl peptides [Glun(CO2Me)n + 1–CO–]2; n = 1, 3, 7. J. Peptide Res. 51, 297–302.Medline 63J.P. Tam, P. Clavijo, Y.-A. Lu, V. Nussenzweig, R. Nussenzweig and F. Zavala (1990). Incorporation of T and B epitopes of the circumsporozoite protein in a chemically defined synthetic vaccine against malaria. J. Exp. Med. 171, 299–306.Medline 64G. Fassina and G. Cassani (1993). Peptide-based assay for the identification of endothelin-converting enzyme inhibitors. Peptide Res. 6, 73–78.Medline 65P. Simmonds, K.A. Rose, S. Graham, S.W. Chan, F. McOmish, B.C. Dow, E.A. Follett, P.L. Yap and H. Marsden (1993). Mapping of serotype-specific, immunodominant epitopes in the NS-4 region of hepatitis C virus (HCV): use of type-specific peptides to serologically differentiate infections with HCV types 1, 2, and 3. J. Clin. Microbiol. 31, 1493–1503.Medline 66G. Fassina (1992). Oriented immobilization of peptide ligands on solid supports. J. Chromatogr. 591, 99–106.Medline 67S. Butz, S. Rawer, W. Rapp and U. Birsner (1994). Immunization and affinity purification of antibodies using resin-immobilized lysine-branched synthetic peptides. Peptide Res. 7, 20–23.Medline 68J.P. Briand, C. Andre, N. Tuaillon, L. Herve, J. Neimark and S. Muller (1992). Multiple autoepitope presentation for specific detection of antibodies in primary biliary cirrhosis. Hepatology 16, 1395–1403.Medline 69F. Sinigaglia, M. Guttinger, S. Graham, S.W. Chan, F. McOrnish, B. Dow, E.A. Follette, P. Yap and H. Marsden (1993). Mapping of serotype-specific, immunodominant epitopes in the NS-4 region of hepatitis C virus (HCV): use of type-specific peptides to serologically differentiate infections with HCV types 1, 2, and 3. J. Clin. Microbiol. 31, 1493–1503.Medline 70P. Ho, D. Mutch, K. Winkel, A.J. Saul, G.I. Jones, T.J. Doran and C.M. Rzepczyk (1990). Identification of two promiscuous T cell epitopes from tetanus toxin. Eur. J. Immunol 20, 477–483.Medline 71V.S. Ivanov, L.N. Kulik, A.E. Gabrielian, L.D. Tchikin, A.T. Kozich and V.T. Ivanov (1994). Synthetic peptides in the determination of hepatitis A virus T-cell epitopes. FEBS Lett. 345, 159–161.Medline 72R.W. Tindle, G.J. Fernando, J.C. Sterling and I.H. Frazer (1991). A 'public' T-helper epitope of the E7 transforming protein of human papillomavirus 16 provides cognate help for several E7 B-cell epitopes from cervical cancer-associated human papillomavirus genotypes. Proc. Natl. Acad. Sci. USA 88, 5887–5891.Medline 73N. Ahlborg (1995). Synthesis of a diepitope multiple antigen peptide containing sequences from two malaria antigens using Fmoc chemistry. J. Immunol. Methods 179, 269–275.Medline 74J.P. Tam and Y.-A. Lu (1989). Vaccine engineering: enhancement of immunogenicity of synthetic peptide vaccines related to hepatitis in chemically defined models consisting of T- and B-cell epitopes. Proc. Natl. Acad. Sci. USA 86, 9084–9088.Medline 75B. Nardelli, J.P. Defoort, W. Huang and J.P. Tam (1992). Design of a complete synthetic peptide-based AIDS vaccine with a built-in adjuvant. AIDS Res. Hum. Retroviruses 8, 1405–1407.Medline 76M. Levi, U. Ruden, D. Birx, L. Loomis, R. Redfield, K. Lovgren, L. Akerblom, E. Sandstrom and B. Wahren (1993). Effects of adjuvants and multiple antigen peptides on humoral and cellular immune responses to gp160 of HIV-1. J. Acquired Immune Defic. Syndr. 6, 855–864.Medline 77J.M. Calvo-Calle, G.A. de Oliviera, P. Clavijo, M. Maracic, J.P. Tam, Y.-A. Lu, E.H. Nardin, R.S. Nussenzweig and A.H. Cochrane (1993). Immunogenicity of multiple antigen peptides containing B and non-repeat T cell epitopes of the circumsporozoite protein of Plasmodium falciparum. J. Immunol. 150, 1403–1413.Medline 78E.H. Nardin and R.S. Nussenzweig (1993). T cell responses to pre-erythrocytic stages of malaria: role in protection and vaccine development against pre-erythrocytic stages. Annu. Rev. Immunol. 11, 687–727.Medline 79A. Pessi, D. Valmori, P. Migliorini, C. Tougne, E. Bianchi, P.H. Lambert, G. Corradin and G. Del Giudice (1991). Lack of H-2 restriction of the Plasmodium falciparum (NANP) sequence as multiple antigen peptide. Eur. J. Immunol. 21, 2273–2276.Medline 80S.K. Chai, P. Clavijo, J.P. Tam and F. Zavala (1992). Immunogenic properties of multiple antigen peptide systems containing defined T and B epitopes. J. Immunol. 149, 2385–2390.Medline 81J-.P. Briand, C. Barin, M.H.V. Van Regenmortel and S. Muller (1992). Applications and limitations of the multiple antigen peptide (MAP) system in the production and evaluation of anti-peptide and anti-protein antibodies. J. Immunol. Methods 156, 255–265.Medline 82F. Troalen, A. Razafindratsita, A. Puisieux, T. Voeltzel, C. Bohuon, D. Bellet and J.M. Bidart (1990). Structural probing of human lutropin using antibodies raised against synthetic peptides constructed by classical and multiple antigen peptide system approaches. Mol. Immunol. 27, 363–368.Medline 83S.D. Mahale, J. Pereira, U. Natraj and K.S.N. Iyer (1996). Comparison of antibodies raised against the peptide 10–24 of chicken riboflavin carrier protein (cRCP) by classical and multiple antigen peptide (MAP) approaches. J. Immunol. Methods 190, 215–219.Medline 84G.W. McLean, A.M. Owsianka, J.H. Subak-Sharpe and H.S. Marsden (1991). Generation of anti-peptide and anti-protein sera. Effect of peptide presentation on immunogenicity. J. Immunol. Methods 137, 149–157.Medline 85J. Freund (1951). The effect of paraffin and mycobacteria on antibody formation and sensation. A review. Am. J. Clin. Pathol. 21, 645–656. 86J. Freund, G.E. Thompson and M.M. Lipton (1995). Aspermatogenesis, anaphylaxis, and cutaneous sensitization induced in the guinea pig by homologous testicular extract. J. Exp. Med. 101, 591–603. 87A. Adam. Synthetic Adjuvants: Modern Concepts in Immunology Vol. 1, C.A. Bona, Ed., p. 1–58, John Wiley & Sons, New York, 1984. 88A. Adam, R. Ciorbaru, F. Ellouz, J.F. Petit and E. Lederer (1974). Adjuvant activity of monomeric bacterial cell wall peptidoglycans. Biochem. Biophys. Res. Commun. 56, 561–567.Medline 89F. Ellouz, A. Adam, R. Ciorbaru and E. Lederer (1974). Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives. Biochem. Biophys. Res. Commun. 59, 1317–1325.Medline 90S. Kotani, Y. Wanatabe, F. Kinoshita, T. Shimono, I. Morisaki, T. Shiba, S. Kusumoto, Y. Tarumi and K. Ikenaka (1975). Immunoadjuvant activities of synthetic N-acetyl-muramyl-peptides or -amino acids. Biken J. 18, 105–111.Medline 91A. Adam and E. Lederer (1984). Muramyl peptides: immunomodulators, sleep factors, and vitamins. Med. Res. Rev. 4, 111–152.Medline 92C. Leclerc and F.R. Vogel (1986). Synthetic Immunomodulators and synthetic vaccines. Crit. Rev. Ther. Drug Carrier Syst. 2, 353–406.Medline 93K.H. Wiesmüller, W.G. Bessler and G. Jung (1983). Synthesis of the mitogenic S-[2,3-bis-(palmitoyloxy)propyl]-N-palmitoyl pentapeptide from Escherichia coli lipopeptide. Biol. Chem. Hoppe-Seyler's 364, 593–606. 94A. Reitermann, J. Metzgler, K.H. Wiesmüller, G. Jung and W.G. Bessler (1989). Lipopeptide derivatives of bacterial lipoprotein constitute potent immune adjuvants combined with or covalently coupled to antigen or hapten. Biol. Chem. Hoppe-Seyler's 370, 343–354. 95J. Metzger, K.H. Wiesmüller, R. Schaude, W.G. Bessler and G. Jung (1991). Synthesis of novel immunologically active tripalmitoyl-S-glycerylcysteinyl lipopeptides as useful intermediates for immunogen preparations. Int. J. Peptide Protein Res. 37, 46–57.Medline 96V. Braun (1975). Covalent lipoprotein from the outer membrane of Escherichia coli. Biochem. Biophys. Acta 415, 335–377. 97K.H. Wiesmüller, W.G. Bessler and G. Jung (1992). Solid phase peptide synthesis of lipopeptide vaccines eliciting epitope-specific B-, T-helper and T-killer cell response. Int. J. Peptide Protein Res. 40, 255–260.Medline 98F. Melchers, V. Braun, C. Galanos (1975). The lipoprotein of the outer membrane of Escherichia coli: a B-lymphocyte mitogen. J. Exp. Med. 142, 473–482.Medline 99W.G. Bessler and B.P. Ottenbreit (1977). Studies on the mitogenic principle of the lipoprotein from the outer membrane of Escherichia coli. Biochem. Biophys. Res. Commun. 76, 239–246. 100K. Deres, H. Schild, K.H. Wiesmüller, G. Jung and H.G. Rammensee (1989). In vivo priming of virus-specific cytotoxic T-lymphocytes with synthetic lipopeptide vaccine. Nature 342, 561–564.Medline 101J.-P. Defoort, B. Nardelli, W. Huang, D.D. Ho and J.P. Tam (1992). Macromolecular assemblage in the design of a synthetic AIDS vaccine. Proc. Natl. Acad. Sci. USA 89, 2879–2883. 102J.-P. Defoort, B. Nardelli, W. Huang and J.P. Tam (1992). A rational design of synthetic peptide vaccine with built-in adjuvant. A modular approach for unambiquity. Int. J. Peptide Protein Res. 40, 214–221.Medline 103B. Nardelli and J.P. Tam (1993). Cellular immune responses induced by in vivo priming with a lipid-conjugated multimeric antigen peptide. Immunology 79, 355–361.Medline 104R.M.L. Buller, K.L. Holmes, A. Hugin, T.N. Frederickson and H.C. Morse III (1987). Induction of cytotoxic T-cell responses in vivo in the absence of CD4 helper cells. Nature 328, 77–79.Medline 105N. Flinn, S. Coppard, W.A. Gibbons, A. Shew, P. Arturson and I. Toth. Oral absorptions studies of lipidic conjugates of thyrotropin releasing hormone (TRH) and luteinizing hormone releasing hormone (LHRH), in: Peptides: Chemistry, Structure and Biology, P.T.P. Kaumaya and R.S. Hodges, Eds, p. 165–167, Mayflower Scientific Ltd., Kingswinford, 1996. 106G. Zhong, I. Toth, R. Reid and R.C. Brunham (1993). Immunogenicity evaluation of a lipidic amino acid-based synthetic peptide vaccine for Chlamydia trachomatis. J. Immunol. 151, 3728–3736.Medline 107N.J.C.M. Beekman, W.M.M. Schaaper, G.I. Tesser, K. Dalsgaard, S. Kamstrup, J.M.P. Langeveld, R.S. Boshuizen and R.H. Meloen (1997). Synthetic peptide vaccines: palmitoylation of peptide antigens by a thioester bond increases immunogenicity. J. Peptide Res. 50, 357–364.Medline 108W. Huang, B. Nardelli and J.P. Tam (1994). Lipophilic multiple antigen peptide system for peptide immunogen and synthetic vaccine. Mol. Immunol. 31, 1191–1199.Medline 109A.F. Verheul, V. Udhayakumar, D.L. Jue, R.M. Wohlhueter and A.A. Lal (1995). Monopalmitic acid-peptide conjugates induce cytotoxic T cell responses against malarial epitopes: importance of spacer amino acids. J. Immunol. Methods 182, 219–226.Medline 110B. Nardelli, F.B. Haser and J.P. Tam (1994). Oral administration of an antigenic synthetic lipopeptide (MAP-P3C) evokes salivary antibodies and systemic humoral and cellular responses. Vaccine 12, 1335–1339.Medline 111G.F. Springer (1984). T and Tn, general carcinoma autoantigens. Science 224, 1198–1206.Medline 112S.I. Hakomori (1991). Possible functions of tumor-associated carbohydrate antigens. Curr. Opin. Immunol. 3, 646–653.Medline 113G.F. Springer and P.R. Desai. Pancarcinoma T and Tn epitopes: autoimmunogens and diagnostic markers that reveal incipient carcinomas and help establish prognosis, in: Immunodiagnosis of Cancer, 2nd Edition, R.B. Herberman and D.W. Mercer, Eds, p. 587–612, Marcel Dekker, New York, 1990. 114J. Huang, J.C. Byrd, B. Siddiki, M. Yuan, E. Lau and Y.S. Kim (1992). Monoclonal antibodies against partially deglycosylated colon cancer mucin that recognize Tn antigen. Dis. Markers 10, 81–94.Medline 115G.F. Springer (1989). Tn epitope (N-acetyl-D-galactosamine- O-serine/threonine) density in primary breast carcinoma: a functional predictor of aggresiveness. Mol. Immunol. 26, 1–5.Medline 116J.E.S. Hansen, H. Clausen, S.L. Hu, J.O. Nielsen and S. Olofsson (1992). An O-linked carbohydrate neutralization epitope of HIV-1 gp 120 is expressed by HIV-1 env gene recombinant vaccinia virus. Arch. Virol. 126, 11–20.Medline 117A.K. Singhal, M. Fohn and S. Hakomori (1991). Induction of alpha-N-acetylgalactosamine-O-serine/threonine (Tn) antigen-mediated cellular immune response for active immunotherapy in mice. Cancer Res. 51, 1406–1411.Medline 118P.Y. Fung, M. Madej, R.R. Koganty and B.M. Longenecker (1990). Active specific immunotherapy of a murine mammary adenocarcinoma using a synthetic tumor-associated glycoconjugate. Cancer. Res. 50, 4308–4314.Medline 119F. Helling, S. Zhang, A. Shang, S. Adluri, M. Calves, R. Koganty, B.M. Longenecker, T.J. Yao, H.F. Oettgen and P.O. Livingston (1995). GM2-KLH conjugate vaccine: increased immunogenicity in melanoma patients after administration with immunological adjuvant QS-21. Cancer. Res. 55, 2783–2788.Medline 120M. Zheng, M. Gobbo, L. Biondi, F. Filira, S. Hakomori and R. Rocchi (1994). Synthetic immunochemistry of glycohexapeptide analogues characteristic of oncofetal fibronectin. Solid phase synthesis and antigenic activity. Int. J. Peptide Protein Res. 43, 230–238.Medline 121T. Toyokuni, B. Dean, S. Cai, D. Boivin, S. Hakomori and A.K. Singhal (1994). Synthetic vaccines: Synthesis of a dimeric Tn antigen-lipopeptide conjugate that elicits immune responses against Tn-expressing glycoproteins. J. Am. Chem. Soc. 116, 395–396. 122M. Elofsson and L.A. Salvador (1997). Preparation of Tn and sialyl Tn building blocks used in Fmoc solid-phase synthesis of glycopeptide fragments from HIV gp 120. Tetrahedron 53, 369–390. 123B. Liebe and H. Kunz (1997). Solid-phase synthesis of a tumour-associated sialyl-Tn antigen glycopeptide with a partial sequence of the 'tandem repeat' of the MUC-1 mucin. Angew. Chem. Int. Ed. Engl. 36, 618–620. 124J. Kihlberg and M. Elofsson (1997). Solid-phase synthesis of glycopeptides: immunological studies with T cell stimulating glycopeptides. Curr. Med. Chem. 4, 85–116. 125H.G. Garg, K. von dem Bruch and H. Kunz (1994). Developments in the synthesis of glycopeptides containing glycosyl L-asparagine, L-serine, and L-threonine. Adv. Carbohydr. Chem. Biochem. 50, 277–310.Medline 126M. Meldal. Glycopeptide synthesis, in: Neoglycoconjugates: Preparation and Applic
Referência(s)