Outro Acesso aberto

References

2018; Wiley; Linguagem: Inglês

10.1002/9781119214656.refs

ISSN

1940-6347

Autores

Ricardo A. Maronna, R. Douglas Martin, Vı́ctor J. Yohai, Matías Salibián‐Barrera,

Tópico(s)

Statistical Methods and Inference

Resumo

Free Access References Book Editor(s):Ricardo A. Maronna, Ricardo A. Maronna National University of La Plata, Consultant Professor, ArgentinaSearch for more papers by this authorR. Douglas Martin, R. Douglas Martin University of Washington, Departments of Applied Mathematics and Statistics, USASearch for more papers by this authorVictor J. Yohai, Victor J. Yohai University of Buenos Aires, Department of Mathematics, ArgentinaSearch for more papers by this authorMatías Salibián-Barrera, Matías Salibián-Barrera The University of British Columbia, Department of Statistics, CanadaSearch for more papers by this author First published: 19 November 2018 https://doi.org/10.1002/9781119214656.refsBook Series:Wiley Series in Probability and Statistics AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Abraham, B. and Chuang, A. (1989), Expectation–maximization algorithms and the estimation of time series models in the presence of outliers, Journal of Time Series Analysis, 14, 221– 234. Adrover, J. and Yohai, V.J. (2002), Projection estimates of multivariate location. The Annals of Statistics, 30, 1760– 1781. Adrover, J., Maronna, R.A. and Yohai, V.J. (2002), Relationships between maximum depth and projection regression estimates, Journal of Statistical Planning and Inference, 105, 363– 375. Agostinelli, C. and Yohai, V.J. (2016), Composite robust estimators for linear mixed models. Journal of American Statistical Association, 111, 1764– 1774. Agostinelli, C., Leung, A., Yohai, V.J. and Zamar, V.J. (2015), Robust estimation of multivariate location and scatter in the presence of cellwise and casewise contamination. Test, 24, 441– 461. Agulló, J. (1996), Exact iterative computation of the multivariate minimum volume ellipsoid estimator with a branch and bound algorithm, Proceedings of the 12th Symposium in Computational Statistics (COMPSTAT 12), 175– 180. Agulló, J. (1997), Exact algorithms to compute the least median of squares estimate in multiple linear regression, in Y. Dodge (ed.), L 1-Statistical Procedures and Related Topics, Institute of Mathematical Statistics Lecture Notes – Monograph Series, vol. 31, pp. 133– 146. Agulló, J. (2001), New algorithms for computing the least trimmed squares regression estimator, Computational Statistics and Data Analysis, 36, 425– 439. Akaike, H. (1970), Statistical predictor identification, Annals of the Institute of Statistical Mathematics, 22, 203– 217. Akaike, H. (1973), Information theory and an extension of the maximum likelihood principle, in B.N. Petran and F. Csaki (eds), International Symposium on Information Theory ( 2nd edn), pp. 267– 281. Akademiai Kiadi. Akaike, H. (1974a), A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19, 716– 723., Akaike, H. (1974b), Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes, Annals of the Institute of Statistical Mathematics, 26, 363– 387. Albert, A. and Anderson, J.A. (1984), On the existence of maximum likelihohod estimates in logistic regression models, Biometrika, 71, 1– 10. Alfons, A., Croux, C. and Gelper, S. (2013), Sparse least trimmed squares regression for analyzing high-dimensional data sets. Annals of Applied Statistics, 7, 226– 248. Alqallaf, F.A., Konis, K.P., Martin, R.D. and Zamar, R.H. (2002), Scalable robust covariance and correlation estimates for data mining, in Proceedings of SIGKDD 2002, Edmonton, Alberta, Canada, Association of Computing Machinery (ACM). Alqallaf, F.A., van Aelst, S., Yohai, V.J. and Zamar, R.H. (2009), Propagation of outliers in multivariate data. Annals of Statistics, 37, 311– 331. Analytical Methods Committee (1989), Robust statistics – How not to reject outliers, Analyst, 114, 1693– 1702. Anderson, D.K., Oti, R.S., Lord, C. and Welch, K (2009), Patterns of growth in adaptive social abilities among children with autism spectrum disorders. Anderson, T.W. (1994), The Statistical Analysis of Time Series. John Wiley and Sons. Journal of Abnormal Child Psychology, 37, 1019– 1034. Arslan, O. (2004), Convergence behavior of an iterative reweighting algorithm to compute multivariate M-estimates for location and scatter, Journal of Statistical Planning and Inference, 118, 115– 128. Bai, Z.D. and He, X. (1999), Asymptotic distributions of the maximal depth estimators for regression and multivariate location, The Annals of Statistics, 27, 1616– 1637. Banerjee, O., Ghaoaui, L.E. and D'Aspremont, A. (2008), Model selection through sparse maximum likelihood estimation. Journal of Machine Learning Research, 9, 485– 516. Barnett, V. and Lewis, T. (1998), Outliers in Statistical Data ( 3rd edn). John Wiley. Barrodale, I. and Roberts, F.D.K. (1973), An improved algorithm for discrete l 1 linear approximation, SIAM Journal of Numerical Analysis, 10, 839– 848. Belsley, D.A., Kuh, E. and Welsch, R.E. (1980), Regression Diagnostics. John Wiley. Bergesio A. and Yohai, V.J. (2011), Projection estimators for generalized linear models. Journal of the American Statistical Association, 106, 661– 671. Berrendero, J.R. and Zamar, R.H. (2001), The maxbias curve of robust regression estimates, The Annals of Statistics, 29, 224– 251. Bianco, A.M. and Boente, G.L. (2002), On the asymptotic behavior of one-step estimates in heteroscedastic regression models. Statistics and Probability Letters, 60, 33– 47. Bianco, A. and Yohai, V.J. (1996), Robust estimation in the logistic regression model, in H. Rieder (ed), Robust Statistics, Data Analysis and Computer Intensive Methods, Proceedings of the workshop in honor of Peter J. Huber, Lecture Notes in Statistics, vol. 109, pp. 17– 34. Springer-Verlag. Bianco, A.M., García Ben, M., Martínez, E.J. and Yohai, V.J. (1996), Robust procedures for regression models with ARIMA errors, in A. Prat (ed.), COMPSTAT 96, Proceedings in Computational Statistics, pp. 27– 38. Physica-Verlag. Bianco, A.M., Boente, G.L. and Di Rienzo J. (2000), Some results of GM–based estimators in heteroscedastic regression models, Journal of Statististical Planning and Inference, 89, 215– 242. Bianco, A.M., Garcia Ben, M., Martinez, E. and Yohai, V.J. (2001), Outlier detection in regression models with ARIMA errors using robust estimates, Journal of Forecasting, 20, 565– 579. Bianco, A.M., Garcia Ben, M. and Yohai, V.J. (2005), Robust estimation for linear regression with asymmetric errors. Canadian Journal of Statistics, 33, 511– 528. Bianco, A.M., Boente, G.L. and Rodrigues, I. (2013), Resistant estimators in Poisson and Gamma models with missing responses and an application to outlier detection. Journal of Multivariate Analysis, 114, 209– 226 Bickel, P.J. (1965), On some robust estimates of location. The Annals of Mathematical Statistics, 36, 847– 858. Bickel, P.J. and Doksum, K.A. (2001), Mathematical Statistics: Basic Ideas and Selected Topics, vol. I ( 2nd edn). Prentice Hall. Billingsley, P. (1968), Convergence of Probability Measures. John Wiley and Sons Blackman, R.B. and Tukey, J.W. (1958), The Measurement of Power Spectra. Dover. Bloomfield, P. (1976), Fourier Analysis of Time Series: An Introduction, John Wiley and Sons. Bloomfield, P. and Staiger, W.L. (1983), Least Absolute Deviations: Theory, Applications and Algorithms, Birkhäuser. Boente, G.L. (1983), Robust methods for principal components (in Spanish), PhD thesis, University of Buenos Aires. Boente, G.L. (1987), Asymptotic theory for robust principal components, Journal of Multivariate Analysis, 21, 67– 78. Boente, G.L. and Fraiman, R. (1999), Discussion of (Locantore et al., 1999), Test, 8, 28– 35. Boente, G.L., Fraiman, R. and Yohai, V.J. (1987), Qualitative robustness for stochastic processes, The Annals of Statistics, 15, 1293– 1312. Bond, N.W. (1979), Impairment of shuttlebox avoidance-learning following repeated alcohol withdrawal episodes in rats, Pharmacology, Biochemistry and Behavior, 11, 589– 591. Bondell, H.D. and Stefanski, L.A. (2013), Efficient robust regression via two-stage generalized empirical likelihood, Journal of the American Statistical Association, 108, 644– 655. Box, G.E.P., Hunter, W.G. and Hunter, J.S. (1978), Statistics for Experimenters. John Wiley and Sons. Brandt, A. and Künsch, H.R. (1988), On the stability of robust filter-cleaners. Stochastic Processes and their Applications, 30, 253– 262. Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984), Classification and Regression Trees ., Wadsworth. Brent, R. (1973), Algorithms for Minimisation Without Derivatives. Prentice Hall. Breslow, N.E. (1996), Generalized linear models: Checking assumptions and strengthening conclusions, Statistica Applicata, 8, 23– 41. Brockwell, P.J. and Davis, R.A. (1991), Introduction to Time Series and Forecasting. Springer. Brownlee, K.A. (1965), Statistical Theory and Methodology en Science and Engineering ( 2nd edn). John Wiley. Brubacher. S.R. (1974), Time series outlier detection and modeling with interpolation, Bell Laboratories Technical Memo. Bruce, A.G. and Martin, R.D. (1989), Leave– k –out diagnostics for time series (with discussion), Journal of the Royal Statistical Society (B), 51, 363– 424. Bühlmann, P. and van de Geer, S. (2011), Statistics for High-Dimensional Data . Springer-Verlag. Bustos, O.H. (1982), General M-estimates for contaminated p th-order autoregressive processes: Consistency and asymptotic normality. Robustness in autoregressive processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 59, 491– 504. Bustos, O.H. and Yohai, V.J. (1986), Robust estimates for ARMA models, Journal of the American Statistical Association, 81, 491– 504. Cai, T., Liu, W. and Luo, X. (2011), A constrained l1 minimization approach to sparse precision matrix estimation. Journal of the American Statistical Association, 106, 594– 607. Campbell, N.A. (1980), Robust procedures in multivariate analysis I: Robust covariance estimation, Applied Statistics, 29, 231– 237. Candés, E.J., Li, X. Ma, Y. and Wright, J. (2011), Robust principal component analysis?. Journal of the ACM, 58, Article No. 11. Cantoni, E. and Ronchetti, E. (2001), Robust inference for generalized linear models, Journal of the American Statistical Association, 96, 1022– 1030. Carroll, R.J. and Pederson, S. (1993), On robustness in the logistic regression model, 55, 693– 706. Carroll, R.J. and Ruppert, D. (1982), Robust estimation in heteroscedastic linear models, The Annals of Statistics, 10, 429– 441. Chambers, J. (1977), Computational Methods for Data Analysis. John Wiley. Chang, I., Tiao, G.C. and Chen, C. (1988), Estimation of time series parameters in the presence of outliers, Technometrics, 30, 193– 204 Chatterjee, S. and Hadi, A.S. (1988), Sensitivity Analysis in Linear Regression. John Wiley. Chave, A.D., Thomson, D.J. and Ander, M.E. (1987), On the robust estimation of power spectra, coherence, and transfer functions, Journal of Geophysical Research, 92, 633– 648. Chen, C. and Liu, L.M. (1993), Joint estimation of the model parameters and outlier effects in time series, Journal of the American Statistical Association, 88, 284– 297. Chen, Z. and Tyler, D.E. (2002), The influence function and maximum bias of Tukey's median, The Annals of Statistics, 30, 1737– 1759. Cheng, T.C. and Victoria-Feser, M.P. (2002), High-breakdown estimation of multivariate mean and covariance with missing observations. British Journal of Mathematical & Statistical Psychology, 55, 317– 335. Chervoneva, I. and Vishnyakov, M. (2011), Constrained S-estimators for linear mixed effects models with covariance components. Statistics in Medicine, 30, 1735– 1750, 2011. Clarke, B.R. (1983), Uniqueness and Fréchet diferentiability of functional solutions to maximum likelihood type equations, The Annals of Statistics, 11, 1196– 1205. Cook, R.D. and Weisberg, S (1982), Residuals and Influence in Regression, Chapman and Hall. Copt, S. and Victoria-Feser, M.P (2006), High breakdown inference for the mixed linear model. Journal of American Statistical Association, 101, 292– 300. Croux. C., Dhaene, G. and Hoorelbeke, D. (2003), Robust standard errors for robust estimators, Discussion Papers Series 03.16, KU Leuven. Croux, C. (1998), Limit behavior of the empirical influence function of the median, Statistics and Probability Letters, 37, 331– 340. Croux, C. and Dehon, C. (2003), Estimators of the multiple correlation coefficient: local robustness and confidence intervals, Statistical Papers, 44, 315– 334. Croux, C. and Haesbroeck, G. (2000), Principal component analysis based on robust estimators of the covariance or correlation matrix: influence functions and efficiencies, Biometrika, 87, 603– 618. Croux, C. and Haesbroeck, G. (2003), Implementing the Bianco and Yohai estimator for logistic regression, Computational Statistics and Data Analysis, 44, 273– 295. Croux, C. and Rousseeuw, P.J. (1992), Time-efficient algorithms for two highly robust estimators of scale, Computational Statistics 2, 411–428. Croux, C. and Ruiz-Gazen, A. (1996), A fast algorithm for robust principal components based on projection pursuit, in A. Prat (ed.), Compstat: Proceedings in Computational Statistic, pp. 211– 216. Physica-Verlag. Croux, C., Flandre, C. and Haesbroeck, G. (2002), The breakdown behavior of the maximum likelihood estimator in the logistic regression model, Statistics and Probability Letters, 60, 377– 386. Daniel, C. (1978), Patterns in residuals in the two-way layout, Technometrics, 20, 385– 395. Danilov, M. (2010), Robust estimation of multivariate scatter in non-affine equivariant scenarios. PhD thesis, University of British Columbia. Available at https://open.library.ubc.ca/cIRcle/collections/24/items/1.0069078. Danilov, M., Yohai, V.J. and Zamar, R.H. (2012), Robust estimation of multivariate location and scatter in the presence of missing data. Journal of the American Statistical Association., 107, 1178– 1186. Davies, P.L. (1987), Asymptotic behavior of S-estimators of multivariate location parameters and dispersion matrices, The Annals of Statistics, 15, 1269– 1292. Davies, P.L. (1990), The asymptotics of S-estimators in the linear regression model, The Annals of Statistics, 18, 1651– 1675. Davies, P.L. (1992), The asymptotics of Rousseeuw's minimum volume ellipsoid estimator, The Annals of Statistics, 20, 1828– 1843. Davis, R.A. (1996), Gauss-Newton and M-estimation for ARMA processes with infinite variance, Stochastic Processes and their Applications, 63, 75– 95. Davis, R.A., Knight, K. and Liu, J. (1992), M-estimation for autoregression with infinite variance, Stochastic Processes and their Applications, 40, 145– 180. Davison, A.C. and Hinkley, D.V. (1997), Bootstrap Methods and their Application, Cambridge University Press. Dempster, A., Laird, N. and Rubin, D. (1977), Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1– 38. Denby, L. and Martin, R.D. (1979), Robust estimation of the first-order autoregressive parameter, Journal of the American Statistical Association, 74, 140– 146. de Vel, O., Aeberhard, S. and Coomans, D. (1993), Improvements to the classification performance of regularized discriminant analysis, Journal of Chemometrics, 7, 99– 115. Devlin, S.J., Gnanadesikan, R. and Kettenring, J.R. (1981), Robust estimation of dispersion matrices and principal components, Journal of the American Statistical Association, 76, 354– 362. Donoho, D.L. (1982), Breakdown properties of multivariate location estimators, PhD qualifying paper, Harvard University. Donoho, D. and Gasko, M. (1992), Breakdown properties of location estimators based on halfspace depth and projected outlyingness, The Annals of Statistics, 20, 1803– 1827. Donoho, D.L. and Huber, P.J. (1983), The notion of breakdown point, in P.J. Bickel, K.A. Doksum and J.L. Hodges (eds), A Festshrift for Erich L. Lehmann, pp. 157– 184. Wadsworth. Draper, R. and Smith, H. (1966), Applied Regression Analysis. John Wiley & Sons. Draper, N.R. and Smith, H. (2001), Applied Regression Analysis, ( 3rd edn). John Wiley. Durrett, R. (1996), Probability Theory and Examples ( 2nd edn). Duxbury Press. Efron, B. and Tibshirani, R.J. (1993), An Introduction to the Bootstrap, Chapman and Hall. Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004), Least angle regression. The Annals of Statistics, 32, 407– 499. Ellis, S.P. and Morgenthaler, S. (1992), Leverage and breakdown in L 1 regression, Journal of the American Statistical Association, 87, 143– 148. Fan J. and Li R. (2001), Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96, 1348– 1360. Farcomeni, A. (2014), Robust constrained clustering in presence of entry-wise outliers. Technometrics, 56, 102– 111. Fasano, M.V., Maronna, R.A., Sued, M. and Yohai, V.J. (2012), Continuity and differentiability of regression M functionals. Bernouilli, 8, 1284– 1309. Feller, W. (1971), An Introduction to Probability Theory and its Applications, vol. II ( 2nd edn). John Wiley. Fellner, W.H. (1986), Robust estimation of variance components. Technometrics, 28, 51– 60. Fernholz, L.T. (1983), Von Mises Calculus for Statistical Functionals, Lecture Notes in Statistics No. 19. Springer, Finney, D.J. (1947), The estimation from individual records of the relationship between dose and quantal response, Biometrika, 34, 320– 334. Fox, A.J. (1972), Outliers in time series, Journal of the Royal Statistical Society, Series B, 34, 350– 363. Frahm, G. and Jaekel, U. (2010), A generalization of Tyler's M-estimators to the case of incomplete data. Computational Statistics & Data Analysis, 54, 374– 393. Fraiman, R., Yohai, V.J. and Zamar, R.H. (2001), Optimal M-estimates of location, The Annals of Statistics, 29, 194– 223. Frank, I.E. and Friedman, J.H (1993), A statistical view of some chemometrics regression tools, Technometrics, 2, 109– 135. Frery, A. (2005), Personal communication. Friedman, J., Hastie, T. Höfling, H. and Tibshirani, R. (2007), Pathwise coordinate optimization. Annals of Applied Statistics, 1, 302– 332. Friedman, H., Hastie, T. and Tibshirani R. (2008), Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432– 441. Gather, U. and Hilker, T. (1997), A note on Tyler's modification of the MAD for the Stahel–Donoho estimator, The Annals of Statistics, 25, 2024– 2026. Genton, M.G. and Lucas, A. (2003), Comprehensive definitions of breakdown-points for independent and dependent observations, Journal of the Royal Statistical Society Series B, 65, 81– 94. Genton, M.G. and Ma, Y. (1999), Robustness properties of dispersion estimators, Statitics and Probability Letters, 44, 343– 350. Gervini, D. and Yohai, V.J. (2002), A class of robust and fully efficient regression estimators, The Annals of Statistics, 30, 583– 616. Giltinan, D.M., Carroll, R.J. and Ruppert, D. (1986), Some new estimation methods for weighted regression when there are possible outliers, Technometrics, 28, 219– 230. Gnanadesikan, R. and Kettenring, J.R. (1972), Robust estimates, residuals, and outlier detection with multiresponse data, Biometrics, 28, 81– 124. Golueke, C.G. and McGauhey, P.H. (1970), Comprehensive Studies of Solid Waste Management , US Department of Health, Education and Welfare, Public Health Services Publication No. 2039. Grenander, U. (1981), Abstract Inference. Wiley. Grenander, U. and Rosenblatt, M. (1957), Statistical Analysis of Stationary Time Series, John Wiley and Sons. Hampel, F.R. (1971), A general definition of qualitative robustness, The Annals of Mathematical Statistics, 42, 1887– 1896. Hampel, F.R. (1974), The influence curve and its role in robust estimation. , The Annals of Statistics, 69, 383– 393. Hampel, F.R. (1975), Beyond location parameters: Robust concepts and methods, Bulletin of the International Statistical Institute, 46, 375– 382. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A. (1986), Robust Statistics: The Approach Based on Influence Functions. John Wiley. Hannan, E.J. and Kanter, M. (1977), Autoregressive processes with infinite variance, Journal of Applied Probability, 14, 411– 415. Harvey, A.C. and Phillips, G.D.A. (1979), Maximum likelihood estimation of regression models with autoregressive moving average disturbances, Biometrika, 66, 49– 58. Hastie, T., Tibshirani, R. and Friedman, J. (2001), The Elements of Statistical Learning. Springer. Hawkins, D.M. (1994), The feasible solution algorithm for least trimmed squares regression, Computational Statistics and Data Analysis, 17, 185– 196. He, X. (1997), Quantile curves without crossing, The American Statistician, 51, 186– 192. He, X and Portnoy, S. (1992), Reweighted LS estimators converge at the same rate as the initial estimator, The Annals of Statistics, 20, 2161– 2167. Henderson, C., Kempthorne, O., Searle, S. and von Krosigk, C. (1959), The estimation of environmental and genetic trends from records subject to culling. Biometrics, 15, 192– 218. Hennig, C. (1995), Efficient high-breakdown-point estimators in robust regression: Which function to choose?, Statistics and Decisions, 13, 221– 241. Hettich, S. and Bay, S.D. (1999), The UCI KDD Archive, http://kdd.ics.uci.edu. University of California, Department of Information and Computer Science. Hoerl, A.E. and Kennard, R.W. (1970), Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 8, 27– 51. Hössjer, O. (1992), On the optimality of S-estimators, Statistics and Probability Letters, 14, 413– 419. Hsieh, C.J., Sustik, M.A., Dhillon, I.S. and Ravikumar, P. (2011), Sparse inverse covariance matrix estimation using quadratic approximation. Advances in Neural Information Processing Systems, 24, 2330– 2338. Huber, P.J. (1964), Robust estimation of a location parameter, The Annals of Mathematical Statistics, 35, 73– 101. Huber, P.J. (1965), A robust version of the probability ratio test, The Annals of Mathematical Statistics, 36, 1753– 1758. Huber, P.J. (1967), The behavior of maximum likelihood estimates under nonstandard conditions, in Proceedings of Fifth Berkeley Symposium of Mathematical Statistics and Probability, vol. 1, pp. 221– 233. University of California Press. Huber, P.J. (1968), Robust confidence limits, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 10, 269– 278. Huber, P.J. (1981). Robust Statistics. John Wiley. Huber, P.J. (1984), Finite sample breakdown of M- and P-estimators, The Annals of Statistics, 12, 119– 126. Huber, P.J. and Ronchetti, E.M. (2009), Robust Statistics ( 2nd edn). John Wiley. Huber-Carol, C. (1970), Étude asymptotique des tests robustes, PhD thesis, Eidgenössische Technische Hochschule, Zürich. Hubert, M. and Rousseeuw, P.J. (1996), Robust regression with a categorical covariable, in H. Rieder (ed.), Robust Statistics, Data Analysis, and Computer Intensive Methods, Lecture Notes in Statistics No. 109, pp. 215–224. Springer Verlag. Hubert, M. and Rousseeuw, P.J. (1997), Robust regression with both continuous and binary regressors. Journal of Statistical Planning and Inference, 57, 153– 163. Hubert, M., Rousseeuw, P.J. and Vanden Branden, K. (2012), ROBPCA: A new approach to robust principal component analysis. Technometrics, 47, 64– 79. Johnson, W. (1985), Influence measures for logistic regression: Another point of view, Biometrika, 72, 59– 65. Johnson, R.A. and Wichern, D.W. (1998), Applied Multivariate Statistical Analysis, Prentice Hall. Jones, R.H. (1980), Maximum likelihood fitting of ARMA models to time series with missing observations, Technometrics, 22, 389– 396. Khan, K., Van Aelst, S. and Zamar, R. (2007), Robust linear model selection based on least angle regression. Journal of the American Statistical Association, 102, 1289– 1299. Kandel, R. (1991), Our Changing Climate, McGraw-Hill, Kanter, M. and Steiger, W.L. (1974), Regression and autoregression with infinite variance, Advances in Applied Probability, 6, 768– 783. Kent, J.T. and Tyler, D.E. (1996), Constrained M-estimation for multivariate location and scatter, The Annals of Statistics, 24, 1346– 1370. Kim, J. and Pollard, D. (1990), Cube root asymptotics, The Annals of Statistics, 18, 191– 219. Kleiner, B., Martin, R.D. and Thomson, D.J. (1979), Robust estimation of power spectra (with discussion), Journal of the Royal Statistical Society Series B, 41, 313– 351. Knight, K. (1987), Rate of convergence of centered estimates of autoregressive parameters for infinite variance autoregressions, Journal of Time Series Analysis, 8, 51– 60. Koenker, R. and Bassett, G.J. (1978), Regression quantiles, Econometrica, 46, 33– 50. R. Koenker, P. Hammond and A. Holly (eds) (2005), Quantile Regression, Cambridge University Press. Koller, M. (2012), Nonsingular subsampling for S-estimators with categorical predictors. Available at arXiv:1208.5595 [stat.CO]. Koller M. (2013), Robust estimation of linear mixed models. PhD thesis, ETH Zurich. Koller, M. and Stahel, W.A. (2011), Sharpening Wald-type inference in robust regression for small samples. Computational Statistics & Data Analysis, 55, 2504– 2515. Krasker, W.S. and Welsch, R.E. (1982), Efficient bounded influence regression estimation, Journal of the American Statistical Association, 77, 595– 604. Künsch, H. (1984), Infinitesimal robustness for autoregressive processes, The Annals of Statistics, 12, 843– 863. Künsch, H.R. Stefanski, L.A. and Carroll, R.J. (1991), Conditionally unbiased bounded-influence estimation in general regression models, with applications to generalized linear models, Journal of the American Statistical Association, 84, 460– 466. Lauritzen, S.L. (1996), Graphical Models. Clarendon Press. Ledolter, J. (1979), A recursive approach to parameter estimation in regression and time series models, Communications in Statistics, A8, 1227– 1245. Ledolter, J. (1991), Outliers in time series analysis: Some comments on their impact and their detection, in W. Stahel and S. Weisberg (eds.), Directions in Robust Statistics and Diagnostics, Part I, pp. 159– 165. Springer–Verlag. Lee, C.H. and Martin, R D. (1986), Ordinary and proper location M-estimates for autoregressive-moving average models, Biometrika, 73, 679– 686. Lehmann, E.L. and Casella, G. (1998), Theory of Point Estimation ( 2nd edn), Springer Texts in Statistics. Leung, A., Yohai, V.J. and Zamar, R.H. (2017) Multivariate Location and Scatter Matrix Estimation u

Referência(s)