Bibliography
2019; Taylor & Francis; Linguagem: Inglês
10.1002/9781118630006.biblio
ISSN1469-7696
AutoresMaria C. Mariani, Ionuţ Florescu,
Tópico(s)Complex Systems and Time Series Analysis
ResumoFree Access Bibliography Maria C. Mariani, Maria C. Mariani University of Texas at El Paso, Texas, United StatesSearch for more papers by this authorIonut Florescu, Ionut Florescu Stevens Institute of Technology, Hoboken, United StatesSearch for more papers by this author Book Author(s):Maria C. Mariani, Maria C. Mariani University of Texas at El Paso, Texas, United StatesSearch for more papers by this authorIonut Florescu, Ionut Florescu Stevens Institute of Technology, Hoboken, United StatesSearch for more papers by this author First published: 04 November 2019 https://doi.org/10.1002/9781118630006.biblio AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References J. Abate and W. Whitt. The fourier-series method for inverting transforms of probability distributions. Queueing Systems, 10(1): 5– 87, 1992. R.A. Adams. Sobolev Spaces. Academic Press, 1975. Y. Aït-Sahalia. Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation approach. Econometrica, 70(1): 223– 262, 2002. P. Amster, C. Averbuj, P. De Napoli, and M. C. Mariani. A parabolic problem arising on financial mathematics. Nonlinear Analysis Series B: Real World Applications, 11: 759– 763, 2010. L. Andersen and J. Andreasen. Jump-Diffusion process: Volatility smile fitting and numerical methods for option pricing. Review of Derivatives Research, 4: 231– 262, 2000. L.B.G. Andersen and V. V. Piterbarg. Moment explosions in stochastic volatility models. Finance and Stochastics, 11: 29– 50, 2007. B. Anderson, J. Jackson, and M. Sitharam. Descartes' rule of signs revisited. American Mathematical Monthly, 105: 447– 451, 1998. D. Applebaum. Lévy Processes and Stochastic Calculus. Cambridge University Press, 2004. S. Asmussen and P.W. Glynn. Stochastic Simulation: Algorithms and Analysis. Stochastic Modelling and Applied Probability. Springer, 2007. K. Atkinson. An Introduction to Numerical Analysis. John Wiley & Sons, Inc., 2nd edition, 1989. K. Atkinson and W. Han. Elementary Numerical Analysis. John Wiley & Sons, Inc., 3rd edition, 2004. M. Ausloos and K. Ivanova. Introducing false eur and false eur exchange rates. Physica A: Statistical Mechanics and Its Applications, 286: 353– 366, 2000. M. Avellaneda, C. Friedman, R. Holmes, and D. Samperi. Calibrating volatility surfaces via relative-entropy minimization. Applied Mathematical Finance, 4(1): 34– 64, 1997. E. Barany, M.P. Beccar Varela, and I. Florescu. Long correlations applied to the study of memory effects in high frequency (tick) data, the down jones index and international indices. Handbook of Modeling High Frequency Data, Wiley, 1: 327– 346, 2011. E. Barany, M.P. Beccar Varela, I. Florescu, and I. SenGupta. Detecting market crashes by analyzing long memory effects using high frequency data. Quantitative Finance, 12(4): 623– 634, 2011. G. Barles, E. Chasseigne, and C. Imbert. Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations. Journal of the European Mathematical Society, 13: 1– 26, 2011. D. Bates. Jumps and stochastic volatility: the exchange rate processes implicit in deutschemark options. The Review of Financial Studies, 9: 69– 107, 1996. M.P. Beccar-Varela, H. Gonzalez-Huizar, M.C. Mariani, and O.K. Tweneboah. Use of wavelets techniques to discriminate between explosions and natural earthquakes. Physica A: Statistical Mechanics and Its Applications, 457: 42– 51, 2016. M.P. Beccar-Varela, M.C. Mariani, O.K. Tweneboah, and I. Florescu. Analysis of the lehman brothers collapse and the flash crash event by applying wavelets methodologies. Physica A: Statistical Mechanics and Its Applications, 474: 162– 171, 2017. N.A. Beliaeva and S.K. Nawalkha. A simple approach to pricing american options under the heston stochastic volatility model. The Journal of Derivatives, 17(4): 25– 43, 2010. J. Bertoin. Lévy Processes. Cambridge University Press, 1996. D. Bertsimas and J. Tsitsiklis. Simulated annealing. Statistical Science, 8: 10– 15, 1993. C. Bingham, M.D. Godfrey, and J.W. Tukey. Modern techniques of power spectrum estimation. IEEE Transactions on Audio Electroacoustic, AU-15: 55– 66, 1967. F. Black and M. Scholes. The valuation of options and corporate liability. Journal of Political Economy, 81: 637– 654, 1973. S. Bochner. Diffusion equation and stochastic processes. Proceedings of the National Academy of Sciences of the United States of America, 35(7): 368370, 1949. K. Boukhetala and A. Guidoum. A package for simulation of diffusion processes in R., ffhal-00629841f, 2011. P.P. Boyle and T. Vorst. Option replication in discrete time with transaction costs. The Journal of Finance, 47: 271, 1992. E.O. Brigham. The Fast Fourier Transform. Prentice-Hall, Inc., 1974. D. Brigo and F. Mercurio. Interest Rate Models – Theory and Practice: With Smile, Inflation and Credit. Springer, 2nd edition, 2006. C.G. Bucher. Adaptive sampling – An iterative fast Monte Carlo procedure. Structural Safety, 5: 119– 128, 1988. S.V. Buldyrev, A.L. Goldberger, S. Havlin, R.N. Mantegna, M.E. Matsa, C.K. Peng, M. Simons, and H.E. Stanley. Long-range correlation properties of coding and noncoding dna sequences: Genbank analysis. Physical Review E, 51: 5084– 5091, 1995. R.E. Caflisch and S. Chaudhary. Monte carlo Simulation for American Options. Springer, 116, 2004. G. Casella and R.L. Berger. Statistical Inference. Duxbury advanced series in statistics and decision sciences. Thomson Learning, 2002. A.L. Cauchy. Analyse Algébrique. Imprimerie Royale, 1821. N. Chen, R. Roll, and S.A. Ross. Economic forces and the stock market. The Journal of Business, 59(3): 383– 403, 1986. M. Chesney and L. Scott. Pricing European currency options: a comparison of the modified black-scholes model and a random variance model. Journal of Financial and Quantitative Analysis, 24: 267– 284, 1989. P. Cizeau, Y.H. Liu, M. Meyer, C.K. Peng, and H.E. Stanley. Volatility distribution in the s&p500 stock index. Physica A: Statistical Mechanics and Its Applications, 245: 441– 445, 1997. L. Clewlow and C. Strickland. Implementing Derivatives Models. Wiley, 1998. V. Connor. The three types of factor models: A comparison of their explanatory power. Financial Analysts Journal, 51(3): 42– 46, 1995. R. Cont and P. Tankov. Financial Modelling with Jumps Processes. CRC Financial mathematics series. Chapman & Hall, 2004. R. Cont and E. Voltchkova. Integro-differential equations for option prices in exponential lévy models. Finance and Stochastic, 9: 299– 325, 2005. D.R. Cox. Some statistical methods connected with series of events. Journal of the Royal Statistical Society, 17(2): 129– 164, 1955. J. Cox. Notes on option pricing i: Constant elasticity of variance diffusions. Working paper, Stanford University, 1975. J. Cox. Notes on option pricing i: Constant elasticity of variance diffusions. Journal of Portfolio Management, 22: 15– 17, 1996. J. Cox and S. Ross. The valuation of options for alternative stochastic processes. Journal of Financial Economics, 3: 145– 166, 1976. J.C. Cox, J.E. Ingersoll, and S.A. Ross. A theory of the term structure of interest rates. Econometrica, ( 53): 385– 407, 1985. J. Cox, J.E. Ingersoll Jr, and S.A. Ross. A theory of the term structure of interest rates. Econometrica, 53(2): 385– 408, 1985. J.C. Cox, S.A. Ross, and M. Rubinstein. Option pricing: A simplified approach. Journal of Financial Econometrics, 7: 229– 263, 1979. S. Dajcman. Interdependence between some major european stock markets-a wavelet lead/lag analysis. Prague Economic Papers, pages 28– 49, 2013. M.H.A. Davis, G.P. Vassilios, and T. Zariphopoulou. European option pricing with transaction costs. SIAM Journal on Control and Optimization, 31: 470– 493, 1993. F. Delbaen and W. Schachermayer. A general version of the fundamental theorem of asset pricing. Mathematische Annalen, 300: 463– 520, 1994. P. Del Moral. Feynman-Kac Formulae. Genealogical and Interacting Particle Systems with Applications. Probability and Its Applications ( New York). Springer-Verlag, 2004. P. Del Moral, J. Jacod, and P. Protter. The monte-carlo method for filtering with discrete time observations. Probability Theory and Related Fields, 120: 346– 368, 2001. A. Dembo. Lecture notes in probability. http://statweb.stanford.edu/~adembo/stat-310b/lnotes.pdf J.N. Dewynne A.E. Whalley and P. Wilmott. Path-dependent options and transaction costs. Philosophical Transactions: Physical Sciences and Engineering 347 (1684): 517– 529 1994 A. Doucet, N. DeFreitas, and N. Gordon. An introduction to sequential monte carlo methods. Sequential Monte Carlo Methods in Practice, Springer–Verlag, 214, 2001. D. Duffie. Dynamic Asset Pricing Theory. Princeton University Press, 2001. D. Duffie and N. Garleanu. Risk and valuation of collateralized debt obligations. Financial Analysts Journal, 57: 41– 62, 2001. B. Dupire. Pricing with a smile. Risk, 7: 18– 20, 1994. B. Dupire. Pricing and Hedging with Smiles, in Mathematics of Derivative Securities. Cambridge University Press, 1997. B. Engelmann, M. Fengler, and P. Schwendner. Better than its reputation: An empirical hedging analysis of the local volatility model for barrier options. Journal of Risk, 12: 53– 77, 2005. S.N. Ethier and T.G. Kurtz. Markov Processes: Characterization and Convergence. Wiley, 2005. L.C. Evans. Partial Differential Equations. American Mathematical Society, 1998. F. Fang and C. Oosterlee. A novel pricing method for european options based on fourier-cosine series expansions. SIAM Journal on Scientific Computing, 31(2): 826– 848, 2008. H. Federer. A note on the gauss-green theorem. Proceedings of the American Mathematical Society, 9(3): 447– 451, 1958. P.J. Van Fleet. Discrete Wavelet Tranformations: An Elementary Approach with Applications. Wiley, 2008. I. Florescu. Probability and Stochastic Processes. John Wiley & Sons, 2014. I. Florescu and M.C. Mariani. Solutions to an integro-differential parabolic problem arising in the pricing of financial options in a levy market. Electronic Journal of Differential Equations, 62: 1– 10, 2010. I. Florescu and C.G. Păsărică. A study about the existence of the leverage effect in stochastic volatility models. Physica A: Statistical Mechanics and Its Applications, 388(4): 419– 432, 2009. I. Florescu and C.A. Tudor. Handbook of Probability. Wiley, 2014. I. Florescu and F. Viens. Stochastic volatility: Option pricing using a multinomial recombining tree. Applied Mathematical Finance, 15(2): 151– 181, 2008. I. Florescu, R. Liu, and M.C. Mariani. Numerical solutions to an integro-differential parabolic problem arising in the pricing of financial options in a levy market. Electronic Journal of Differential Equations, 2012(231): 1– 12, 2012. I. Florescu, M.C. Mariani, and G. Sewell. Numerical solutions to an integro-differential parabolic problem arising in the pricing of financial options in a levy market. Quantitative Finance, 14(8): 1445– 1452, 2011. G.B. Folland. Introduction to Partial Differential Equations. Princeton University Press, 2nd edition, 1995. E. Foufoula-Georgiou and P. Kumar. Wavelet Analysis and Its Applications. Academic Press, Inc, 1994. J.E. Fowler. The redundant discrete wavelet transform and additive noise. IEEE Signal Processing Letters, 12(9): 629– 632, 2005. A. Friedman. Variational Principles and Free Boundary Problems. Wiley, 1982. G. Fusai and A. Roncoroni. Implementing Models in Quantitative Finance: Methods and Cases. Springer Science & Business Media, 2007. C. Genest and L.P. Rivest. Statistical inference procedures for bivariate archimedean copulas. Journal of the American Statistical Association, 55: 698– 707, 1993. T. Gerstner and P.E. Kloeden. Recent Developments in Computational Finance: Foundations, Algorithms and Applications. World Scientific – Business & Economics, 2013. P. Glasserman. Monte Carlo Methods in Financial Engineering., Volume 53 of Stochastic Modelling and Applied Probability. Springer New York, 2010, 2003. A. Graps. An introduction to wavelets. IEEE Computational Science and Engineering, 2: 50– 61, 1995. A.C. Guidoum and K. Boukhetala. Estimation of stochastic differential equations with sim.diffproc package version 3.0, 2015. X. Guo. Information and option pricings. Quantitative Finance, 1(1): 38– 44, 2000. T.J. Haahtela. Recombining trinomial tree for real option valuation with changing volatility. A http://ssrn.com/abstract=1932411, 2010. P. Hagan, D. Kumar, A. Lesniewski, and D. Woodward. Managing smile risk. Wilmott Magazine, 2002. M. Hanke and E.R. Osler. Computation of local volatilities from regularized dupire equations. International Journal of Theoretical and Applied Finance, 8(2): 207– 222, 2005. J.M. Harrison and S.R. Pliska. Martingales and stochastic integrals in the theory of continuous trading. Stochastic Processes and Their Applications, 11(3): 215– 260, 1981. P. Hartman and G. Stampacchia. On some nonlinear elliptic differential functional equations. Acta Mathematica, 115: 271– 310, 1966. J.G. Hayes. Numerical methods for curve and surface fitting. Bulletin Institute of Mathematics and Its Applications, 10: 144– 152, 1974. J.G. Hayes and J. Halliday. The least-squares fitting of cubic spline surfaces to general data sets. Journal of the Institute of Mathematics and Its Applications, 14: 89– 103, 1974. J.H. He. Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering, 178: 257– 262, 1999. D.C. Heath and G. Swindle. Introduction to Mathematical Finance: American Mathematical Society Short Course. American Mathematical Society, Providence, R.I., 1999. D. Heath, R. Morton, and A. Morton. Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. Econometrica, Econometric Society, 60(1): 77– 105, 1992. S.L. Heston. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2): 327– 43, 1993. S.D. Hodges and A. Neuberger. Optimal replication of contingent claims under transaction costs. Review Futures Market, 8: 222– 239, 1993. T. Hoggard, A.E. Whalley, and P. Wilmott. Hedging option portfolios in the presence of transaction costs. Advance Futures Optics Research, 7: 21, 1994. R. Howard. The gronwall inequality, 1998. http://www.math.sc.edu/howard/Notes/gronwall.pdf. Y.L. Hsu, T.I. Lin, and C.F. Lee. Constant elasticity of variance (cev) option pricing model: Integration and detailed derivations. Mathematics and Computers in Simulation, 79: 60– 71, 2008. R. Huang. Valuation of mortgage-backed securities. Master of Arts Dissertation, Simon Fraser University, 2006. J.C. Hull. Options, Futures and Other Derivatives. Prentice Hall, 7th edition, 2008. J.C. Hull and A.D. White. The pricing of options on assets with stochastic volatilities. Journal of Finance, 42(2): 281– 300, 1987. H.E. Hurst. Long term storage of reservoirs. Transactions of the American Society of Civil Engineers, 116: 770– 808, 1950. N. Ikeda. Stochastic Differential Equations and Diffusion Processes. North Holland, 2nd edition, 1989. H. Imai, N. Ishimura, I. Mottate, and M. Nakamura. On the Hoggard–Whalley–Wilmott equation for the pricing of options with transaction costs. Asia Pacific Financial Markets, 13(4): 315– 326, 2006. Investopedia. Bond etfs: A viable alternative, 2009. Investopedia.com. Investopedia. Commodity etf, 2017. Investopedia.com. Investopedia. Introduction to exchange-traded funds, 2017. Investopedia.com. Investopedia. Leverage etf, 2017. Investopedia.com. K. Ivanova and M. Ausloos. Application of the detrended fluctuation analysis (dfa) method for describing cloud breaking. Physica A: Statistical Mechanics and Its Applications, 274: 349– 354, 1999. K. Ito. On stochastic differential equations. Memoirs of the American Mathematical Society, 4: 1– 51, 1951. S. Janson. Stable distributions. arXiv:1112.0220 [math], 2001. R. Jarrow and A. Rudd. Option Pricing. Dow Jones-Irwin, 1983. Y.M. Kabanov and M.M. Safarian. On leland's strategy of option pricing with transaction costs. Finance Stochast, 1: 239– 250, 1997. R.V.D. Kamp. Local volatility modeling, 2009. Master's thesis, University of Twente, The Netherlands. J.W. Kantelhardt, R. Berkovits, S. Havlin, and A. Bunde. Are the phases in the anderson model long-range correlated? Physica A: Statistical Mechanics and Its Applications, 266: 461– 464, 1999. I. Karatzas and S.E. Shreve. Brownian Motion and Stochastic Calculus. Springer, 2nd edition, 1991. I. Karatzas and S.E. Shreve. Methods of Mathematical Finance. Springer, 1998. S. Karlin and H.M. Taylor. A First Course in Stochastic Processes. Academic Press, 2nd edition, 1975. M. Kessler. Estimation of an ergodic diffusion from discrete observations. Scandinavian Journal of Statistics, 24: 211– 229, 1997. A.Ya. Khintchine and P. Lévy. Sur les lois stables. Comptes Rendus de l'Académie des Sciences, 202: 374, 1936. D. Kincaid and W. Cheney. Numerical Analysis: Mathematics of Scientific Computing. American Mathematical Society, 3rd edition, 2002. P.E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations. Stochastic Modelling and Applied Probability. Springer, 1992. I. Koponen. Analytic Approach to the Problem of Convergence of Truncated Lévy Flights toward the Gaussian Stochastic Process. Physical Review E, 52: 1197, 1995. E. Koscienly-Bunde, A. Bunde, S. Havlin, H.E. Roman, Y. Goldreich, and H.J. Schellnhuber. Indication of universal persistence law governing atmospheric variability. Physical Review Letters, 81: 729– 732, 1998. E. Koscienly-Bunde, H.E. Roman, A. Bunde, S. Havlin, and H.J. Schellnhuber. Long-range power-law correlations in local daily temperature fluctuations. Philosophical Magazine B, 77: 1331– 1339, 1998. S.G. Kou. A jump diffusion model for option pricing. Management Science, 48: 1086– 1101, 2002. S.G. Kou and H. Wang. Option pricing under a double exponential jump diffusion model. Preprint, Columbia University and Brown University. N.V. Krylov. Lectures on Elliptic and Parabolic Equations in Hölder Spaces, volume 12. American Mathematical Society, 1996. O.A. Ladyzenskaja, V.A. Solonikov, and N.N. Ural'ceva. Linear and Quasilinear Equations of Parabolic Type. American Mathematical Society, Providence, RI, 1964. B. Lee and Y.S. Tarng. Application of the discrete wavelet transform to the monitoring of tool failure in end milling using the spindle motor current. International Journal of Advanced Manufacturing Technology, 15(4): 238243, 1999. H.E. Leland. Option pricing and replication with transaction costs. Journal of Finance, 40: 1283– 301, 1985. A. Lesniewski. Short rate models. https://www.math.nyu.edu/alberts/spring07/Lecture5.pdf, 2008. G.M. Lieberman. Second Order Parabolic Differential Equations. World Scientific, 1996. R.H. Liu. Regime-switching recombining tree for option pricing. International Journal of Theoretical and Applied Finance, 13: 479– 499, 2010. R.H. Liu, Q. Zhang, and G. Yin. Option pricing in a regime switching model using the fast fourier transform. Journal of Applied Mathematics and Stochastic Analysis, 22: 1– 22, 2006. Y.H. Liu, P. Cizeau, M. Meyer, C.K. Peng, and H.E. Stanley. Quantification of correlations in economic time series. Physica A: Statistical Mechanics and its Applications, 245: 437– 440, 1997. A. Lo. Hedge Funds: An Analytic Perspectives. Princeton University Press, 2008. A. Lo. Structured Finance & Collaterlaized Debt Obligations. Wiley & Sons, 2008. F.A. Longstaff and E.S. Schwartz. Valuing american options by simulation: a simple least-squares approach. The Review of Financial Studies, 14(1): 113– 147, 2001. B.B. Mandelbrot. The Fractal Geometry of Nature. Freeman and Co., 1982. B.B. Mandelbrot and J.W. Van Ness. Fractional brownian motions, fractional noises and applications. SIAM Review, 10: 422– 437, 1968. R.N. Mantegna and H.E. Stanley. Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. Physical Review Letters, 73: 2946, 1994. M.C. Mariani, I. Florescu, M.P. Beccar Varela, and E. Ncheuguim. Long correlations and lévy models applied to the study of memory effects in high frequency (tick) data. Physica A: Statistical Mechanics and Its Applications, 388(8): 1659– 1664, 2009. M.C. Mariani, I. SenGupta, and P. Bezdek. Numerical solutions for option pricing models including transaction costs and stochastic volatility. Acta Applicandae Mathematicae, 118: 203– 220, 2012. M.C. Mariani and O.K. Tweneboah. Stochastic differential equations applied to the study of geophysical and financial time series. Physica A: Statistical Mechanics and Its Applications, 443: 170– 178, 2016. H. Markowitz. Portfolio Selection: Efficient Diversification of Investments. John Wiley & Sons, Inc, 1959. G. Marsaglia and W.W. Tsang. The ziggurat method for generating random variables. Journal of Statistical Software, 5: 1– 7, 2000. D. Maxey. Fidelity the latest to caution on etfs, 2009. Online.wsj.com. R.C. Merton. An intertemporal capital asset pricing model. Econometrica, 7: 867– 887, 1973. R.C. Merton. Option pricing when the underlying stock returns are discontinuous. Journal of Financial Econometrics, 3: 115– 144, 1976. R.C. Merton. Continuous-Time Finance. Wiley-Blackwell, 1992. D.E. Muller. A method for solving algebraic equations using an automatic computer. Mathematical Tables and Other Aids to Computation, 10: 208– 215, 1956. R.B. Nelsen. An Introduction to Copulas. Springer, 1999. R.B. Nelsen. Properties and applications of copulas: a brief survey. Proceedings of the First Brazilian Conference on Statistical Modeling in Insurance and Finance, University Press USP, 10– 28, 2003. R.B. Nelsen. An Introduction to Copulas. Springer, 2006. D.E. Newland. Harmonic wavelet analysis. Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), 443(1917): 203– 225, 1993. B. Øksendal. Stochastic Differential Equations. Springer Verlag, 5th edition, 2003. B. Øksendal. Stochastic Differential Equations: An Introduction with Applications. Springer, 10th edition, 2010. A.V. Ovanesova and L.E. Surez. Applications of wavelet transforms to damage detection in frame structures. Engineering Structures, 26: 39– 49, 2004. L. Paul. Calcul des Probabilits. Gauthier-Villars, 1925. W. Paul. Introduction to Quantitative Finance, volume 2. John Wiley & Sons Ltd. 2007. C.K. Peng, S. Havlin, H.E. Stanley, and A.L. Goldberger. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos, 5: 82– 87, 1995. C.K. Peng, S.V. Buldyrev, A.L. Goldberger, R.N. Mantegna, M. Simons, and H.E. Stanley. Statistical properties of dna sequences. Physica A: Statistical Mechanics and Its Applications, 221: 180– 192, 1995. C.K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, and A.L. Goldberger. Mosaic organization of dna nucleotides. Physical Review E, 49: 1685– 1689, 1994. C.K. Peng, J. Mietus, J.M. Hausdorff, S. Havlin, H.E. Stanley, and A.L. Goldberger. Long-range anticorrelations and non-gaussian behavior of the heartbeat. Physical Review Letters, 70: 1343– 1346, 1993. M. Pilz and S. Parolai. Tapering of windowed time series. New Manual of Seismological Observatory Practice 2 (NMSOP-2), Deutsches GeoForschungsZentrum GFZ, 1– 4. 2012. L.D. Pitt. Two problems in markov processes. Extending the life span of markov processes. Products of markovian semi-groups. PhD thesis, Princeton University, 1967. L.C.G. Rogers. Monte carlo valuation of american options. Mathematical Finance, 12: 271– 286, 2002. F.D. Rouah. The sabr model. http://www.volopta.com. R. Rowland. Etf statistics for june 2012: Actively managed assets less than, 2012. H. Royden. Real Analysis. Prentice Hall, 3rd edition, 1988. D.B. Rubin. Using the sir algorithm to simulate posterior distributions. Bayesian Statistics 3. Oxford University Press, 1998. H. Rubin and B.C. Johnson. Efficient generation of exponential and normal deviates. Journal of Statistical Computation and Simulation, 76(6): 509– 518, 2006. RYDEX. Rydex etf trust (form: 485apos), 2006. https://www.sec.gov/Archives/edgar/data/1208211/000119312512085741/d274410d485bpos.htm G. Samorodnitsky and M.S. Taqqu. Stable Non-Gaussian Random processes: Stochastic Models with Infinite Variance. Chapman and Hall, 1994. K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, 1999. N. Scafetta and P. Grigolini. Scaling detection in time series: Diffusion entropy analysis. Physical Review E, 66: 036– 130, 2002. W. Schoutens. Lévy Processes in Finance: Pricing Financial Derivatives. Wiley Series in Probability and Stochastics, 2003. W. Schoutens and J. Cariboni. Lévy Processes in Credit Risk. John Wiley & Sons, 2009. L.O. Scott. Option pricing when the variance changes randomly: Theory, estimation, and an application. The Journal of Financial and Quantitative Analysis, 22(4): 419– 438, 1987. SEC. Actively managed exchange-traded funds, 2001. SEC Release No. IC-25258, 66 Fed. Reg. 57614. SEC. Exchange-traded funds (etfs), 2013. U.S. Securities and Exchange Commission. I.W. Selesnick, R.G. Baraniuk, and N.C. Kingsbury. The dual-tree complex wavelet transform. IEEE Signal Processing Magazine, 22(6): 123– 151, 2005. I. SenGupta. Differential operator related to the generalized superradiance integral equation. Journal of Mathematical Analysis and Applications, 369: 101– 111, 2010. W.F. Sharpe. Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19(3): 425– 442, 1964. A.N. Shiryaev. Essentials of the Stochastic Finance. World Scientific, 2008. S.E. Shreve. Stochastic Calculus for Finance II. Springer, 2004. R.H. Shumway and D.S. Stoffer. Time Series Analysis and Its Applications With R Examples. Springer, 2010. K. Simmons. The diagonal argument and the liar. Journal of Philosophical Logic, 19: 277– 303, 1990. D.R. Smart. Fixed Point Theorem. Cambridge University Press, 1980. H.M. Soner, S.E. Shreve, and J. Cvitanic. There is no nontrivial hedging portfolio for option pricing with transaction costs. The Annals of Applied Probability, 5(2): 327– 355, 1995. I. Stakgold. Green's Functions and Boundary Value Problems. Wiley, 1979. E.M. Stein and J.C. Stein. Stock price distributions with stochastic volatility: An analytic approach. Review of Financial Studies, 4(4): 727– 52, 1991. L. Stentoft. Convergence of the least-squares monte carlo approach to american option valuation. Center for Analytical Finance 16, Working Paper Series 113, University of Aarhus School of Business, 2002. W.J. Stewart. Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling. Princeton University Press, 2009. V. Stojanovic, M. Stankovic, and I. Radovanovic. Application of wavelet analysis to seismic signals. 4th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services. TELSIKS'99 (Cat. No.99EX365). Nis, Yugoslavia (13–15 October 1999). IEEE, 13– 15, 1999. D.W. Stroock and S.R.S. Varadhan. Multidimensional Diffusion Processes. Springer, 1979. L. Trigeorgis. A log-transformed binomial numerical analysis method for valuing complex multi-option investments. Journal of Financial and Quantitative Analysis, 26(3): 309– 326, 1991. O.K. Tweneboah. Stochastic differential equation applied to high frequency data arising in geophysics and other disciplines. ETD Collection for University of Texas, El Paso, Paper AAI1600353, 2015. N. Vandewalle, M. Ausloos, M. Houssa, P.W. Mertens, and M.M. Heyns. Non-gaussian behavior and anticorrelations in ultrathin gate oxides after soft breakdown. Applied Physics Letters, 74: 1579– 1581, 1999. O. Vasicek. An equilibrium characterisation of the term structure. Journal of Financial Economics, (5): 177188, 1977. T.A. Vuorenmaa. A wavelet analysis of scaling laws and long-memory in stock market volatility. Proceeding of the SPIE 5848, Noise and Fluctuations in Econophysics and Finance, 27: 39– 54, 2005. W. Wang and M.T. Wells. Model selection and semiparametric inference for bivariate failure-time data. Journal of the American Statistical Association, 95: 62– 76, 2000. C. Wang, Z. Wu, and J. Yin. Elliptic and Parabolic Equations. World Scientific Publishing, 2006. A.E. Whaley and P. Wilmott. An asymptotic analysis of an optimal hedging model for option pricing with transaction costs. Mathematical Finance, 7(3): 307– 324, 1997. R.L. Wheeden and A. Zygmund. Measure and Integral: An Introduction to Real Analysis. Marcel Dekker Inc., 1977. M.J. Wichura. Algorithm as 241: The percentage points of the normal distribution. Journal of the Royal Statistical Society. Series C (Applied Statistics), 37(3): 477– 484, 1988. J.B. Wiggins. Option values under stochastic volatility: Theory and empirical estimates. Journal of Financial Economics, 19(2): 351– 372, 1987. P. Wilmott. The Mathematics of Financial Derivatives, volume 2, Cambridge University Press. 1999. P. Wilmott, S. Howison, and J. Dewynne. The Mathematics of Financial Derivatives a Student Introduction. Cambridge University Press, 1995. H. Wong, Z. Hie W. IP, and X. Lui. Modelling and forecasting by wavelets, and the application to exchange rate. Journal of Applied Statistics, 30(5): 537– 553, 2003. H.M. Yin. A uniqueness theorem for a class of non-classical parabolic equations. Applicable Analysis, 34: 67– 78, 1989. H. Zhao, R. Chatterjee, T. Lonon, and I. Florescu. Pricing bermudan variance swaptions using multinomial trees. The Journal of Derivatives, 26(3): 22– 34, 2018. H. Zhao, Z. Zhao, R. Chatterjee, T. Lonon, and I. Florescu. Pricing variance, gamma, and corridor swaps using multinomial trees. The Journal of Derivatives, 25(2): 7– 21, 2017. L. Zhengyan and B. Zhidong. Probability Inequalities. Springer, 2011. E. Zivot. Unit root tests, Modeling Financial Time Series with S-PLUS. Springer, 2006. V. Zolotarev. One-dimensional stable distributions. American Mathematical Society, 195, 1990. Quantitative Finance ReferencesRelatedInformation
Referência(s)