Outro Acesso aberto Revisado por pares

BIBLIOGRAPHY

2016; American Geophysical Union; Linguagem: Inglês

10.1002/9781119133957.biblio

ISSN

2328-8779

Autores

Joe S. Depner, Todd C. Rasmussen,

Tópico(s)

Soil and Unsaturated Flow

Resumo

Free Access BIBLIOGRAPHY Joe S. Depner, Joe S. DepnerSearch for more papers by this authorTodd C. Rasmussen, Todd C. RasmussenSearch for more papers by this author Book Author(s):Joe S. Depner, Joe S. DepnerSearch for more papers by this authorTodd C. Rasmussen, Todd C. RasmussenSearch for more papers by this author First published: 28 November 2016 https://doi.org/10.1002/9781119133957.biblioBook Series:Geophysical Monograph Series AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Abramowitz, M. (1972), Elementary analytical methods, Handbook of Mathematical Functions, edited by M. Abramowitz, and I. A. Stegun, Chap. 3, Dover, Mineola N. Y., available at http://files.eric.ed.gov/fulltext/ED250164.pdf Adachi, J. I., and E. Detournay (1997), A poroelastic solution of the oscillating pore pressure method to measure permeabilities of “tight” rocks, Pap. 62, Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., 34(3–4), 430. Alcolea, A., E. Castro, M. Barbieri, J. Carrera, and S. Bea (2007), Inverse modeling of coastal aquifers using tidal response and hydraulic tests, Ground Water, 45(6), 711– 722, doi: 10.1111/j.1745-6584.2007.00356.x. Aris, R. (1962), Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Dover, New York. Ataie-Ashtiani, B., R. E. Volker, and D. A. Lockington (1999a), Tidal effects on sea water intrusion in unconfined aquifers, J. Hydrol., 216(1–2), 17– 31, doi: 10.1016/S0022-1694(98)00275-3. Ataie-Ashtiani, B., R. E. Volker, and D. A. Lockington (1999b), Numerical and experimental study of seepage in unconfined aquifers with a periodic boundary condition, J. Hydrol., 222(1–4), 165– 184, doi: 10.1016/S0022-1694(99)00105-5. Bakker, M. (2004), Transient analytic elements for periodic Dupuit-Forcheimer flow, Adv. Water Resour., 27(1), 3– 12, doi: 10.1016/j.advwatres.2003.10.001. Bakker, M. (2009), Sinusoidal pumping of groundwater near cylindrical inhomogeneities, J. Eng. Math., 64(2), 131– 143, doi: 10.1007/s10665-008-9244-0. Bakker, M. (2015), Wigaem: An analytic element model for periodic groundwater flow, available at https://code.google.com/p/wigaem/, accessed 21 November, 2015. Bear, J. (1972), Dynamics of Fluids in Porous Media, American Elsevier, New York. Becker, M. W. and E. Guiltinan (2010), Cross-hole periodic hydraulic testing of inter-well connectivity, presented at 35th Workshop on Geothermal Reservoir Engineering, 1–3 February, SGP-TR-188, Stanford Univ. Stanford, Calif., available at https://pangea.stanford.edu/ERE/pdf/IGSstandard/SGW/2010/becker.pdf. Bernabé, Y., U. Mok, and B. Evans (2006), A note on the oscillating flow method for measuring rock permeability, Int. J. Rock Mech. Min. Sci., 43(2), 311– 316, doi: 10.1016/j.ijrmms.2005.04.013. W. H. Beyer, Ed. in (1984), Section VIII: Calculus, Standard Mathematical Tables, 27th ed., pp. 227– 314. CRC Press, Boca Raton, Fla. Black, J. H., and K. L. Kipp, Jr (1981), Determination of hydrogeological parameters using sinusoidal pressure tests: A theoretical appraisal, Water Resour. Res., 17(3), 686– 692, doi: 10.1029/WR017i003p00686. Bredehoeft, J. D. (1967), Response of well-aquifer systems to Earth tides, J. Geophys. Res., 72(12), 3075– 3087, doi: 10.1029/JZ072i012p03075. Bruggeman, G. A. (1999), Analytical Solutions of Geohydrological Problems, Elsevier, Amsterdam. Burbey, T. J. and M. Zhang (2010), Assessing hydrofracing success from Earth tide and barometric response, Ground Water, 48(6), 825– 835, doi: 10.1111/j.1745-6584.2010.00704.x. Burnett, W. C., P. K. Aggarwal, A. Aureli, H. Bokuniewicz, J. E. Cable, M. A. Charette, E. Kontar, S. Krupa, K. M. Kulkarni, A. Loveless, W. S. Moore, J. A. Oberdorfer, J. Oliveira, N. Ozyurt, P. Povinec, A. M. G. Privitera, R. Rajar, R. T. Ramessur, J. Scholten, T. Stieglitz, M. Taniguchi and J. V. Turner (2006), Quantifying submarine groundwater discharge in the coastal zone via multiple methods, Sci. Total Environ., 367(2–3), 498– 543, doi: 10.1016/j.scitotenv.2006.05.009. Butler, Jr., J. H., G. J. Kluitenberg, D. O. Whittemore, S. P. Loheide II, W. Jim, M. B. Billinger, and X. Zhan (2007), A field investigation of phreatophyte-induced fluctuations in the water table, Water Resour. Res., 43(W02404), doi: 10.1029/2005WR004627. Cardiff, M., T. Bakhos, P. K. Kitanidis, and W. Barrash (2013), Aquifer heterogeneity characterization with oscillatory pumping: Sensitivity analysis and imaging potential, Water Resour. Res., 49(9), 5395– 5410, doi: 10.1002/wrcr.20356. Carr, P. A., and G. S. van der Kamp (1969), Determining aquifer characteristics by the tidal method, Water Resour. Res., 5(5) : 1023– 1031, doi: 10.1029/WR005i005p01023. Carslaw, H. S., and J. C. Jaeger (1986), Conduction of Heat in Solids, 2nd ed., Oxford Univ. Press, New York. Casimir, H. B. G. (1945), On Onsager's principle of microscopic reversibility, Rev. Mod. Phys., 17(2–3), 343– 350, 10.1103/RevModPhys.17.343. Chang, E., and A. Firoozabadi (2000), Gravitational potential variations of the sun and moon for estimation of reservoir compressibility, Soc. Petrol. Eng. J., 5(4), 456– 465, doi: 10.2118/67952-PA. Chapuis, R. P., C. Bélanger, and D. Chenaf (2006), Pumping test in a confined aquifer under tidal influence, Ground Water, 44(2), 300– 305, doi: 10.1111/j.1745-6584.2005.00139.x. Cheng J., C. Chen, and M. Ji (2004), Determination of aquifer roof extending under the sea from variable-density flow modelling of groundwater response to tidal loading: Case study of the Jahe River Basin, Shandong Province, China, Hydrogeology J., 12, 408– 423, doi: 10.1007/s10040-004-0347-z. Cutillo, P. A., and J. D. Bredehoeft (2011), Estimating aquifer properties from the water level response to Earth tides, Ground Water, 49(4), 600– 610, doi: 10.1111/j.1745-6584.2010.00778.x. Davis, A. B., M. G. Trefry, N. Corngold, and A. Mandelis (2001), Letter: Many uses for diffusion waves, Phys. Today (Lett.), 54(3), 100– 102, doi: 10.1063/1.4796266. Erskine, A. D. (1991), The effect of tidal fluctuations on a coastal aquifer in the UK, Ground Water, 29(4), 556– 562, doi: 10.1111/j.1745-6584.1991.tb00547.x. Eves, H. (1984), Section V: Trigonometry, in Standard Mathematical Tables, 27th ed., edited by W. H. Beyer, pp. 132– 155. CRC Press, Boca Raton, Fla. Ferris, J. G. (1951), Cyclic fluctuations of water level as a basis for determining aquifer transmissibility, Bull. 33, Int. Geod. Geophys. Union, Assoc. Sci. Hydrol., General Assembly, Brussels, Int. Assoc. Hydrol Sci., available at http://pdw.hanford.gov/arpir/pdf.cfm?accession=D196025992. Fischer, G. J. (1992), The determination of permeability and storage capacity: Pore pressure oscillation method, in Fault Mechanics and Transport Properties of Rocks, edited by B. Evans and T. F. Wong, pp. 187– 211, Academic, New York, doi: 10.1016/S0074-6142(08)62823-5. Freeze, R. A. and J. A. Cherry (1979), Groundwater, Prentice-Hall, Englewood Cliffs, N. J. Furbish, D. J. (1991), The response of water level in a well to a time series of atmospheric loading under confined conditions, Water Resour. Res., 27(4), 557– 568, doi: 10.1029/90WR02775. Goldstein, H. (1980), Classical Mechanics, 2nd ed., Addison-Wesley, Reading, Mass. Gradshteyn, I. S., and I. M. Ryzhik (1980), Tables of Integrals, Series, and Products, Academic New York. Hanson, J. M. (1980) Reservoir response to tidal and barometric effects, Geotherm. Resour. Counc. Trans. 4, 337– 340. Hatch, C. E., A. T. Fisher, J. S. Revenaugh, J. Constantz, and C. Ruehl (2006), Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records: Method development, Water Resour. Res., 42(W10410), doi: 10.1029/2005WR004787. Hermance, J. F. (1998), A Mathematical Primer on Groundwater Flow, Prentice Hall, Upper Saddle River N. J. Hobbs, P. J., and J. H. Fourie (2000), Earth-tide and barometric influences on the potentiometric head in a dolomite aquifer near the Vaal Range Barrage, South Africa, Water SA, 26(3), 353– 360. Hsieh, P. A., J. D. Bredehoeft, and J. M. Farr (1987), Determination of transmissivity from Earth tide analysis, Water Resour. Res., 23(10), 1824– 1832, 10.1029/WR023i010p01824. Hsieh, P. A., J. D. Bredehoeft, and S. A. Rojstaczer (1988), Response of well aquifer systems to Earth tides: Problem revisited, Water Resour. Res., 24(3), 468– 472, doi: 10.1029/WR024i003p00468. Hvorslev, M. J. (1951), Time lag and soil permeability in ground-water observations, Bull. 36, U.S. Army Corps of Engi., Waterways Experiment Station, Vicksburg, Miss., available at http://www.csus.edu/indiv/h/hornert/Geol%20500%20Spring%202014/Week_3_slug_tests/Hvorslev%201951.pdf. Jackson, J. D. (1998), Classical Electrodynamics, 3rd ed., Wiley, New York. Jacob, C. E. (1950), Flow of groundwater, in Engineering Hydraulics, edited by H. Rouse, pp. 321– 386, Wiley, New York. Jha, M. K., D. Namgial, Y. Kamii, and S. Peiffer (2008), Hydraulic parameters of coastal aquifer systems by direct methods and by an extended tide-aquifer interaction technique, Water Resour. Mgmt., 22(12), 1899– 1923, doi: 10.1007/s11269-008-9259-3. jostpuur (2010, Mar 16), Transformation of cross product [Online forum comment]. Message posted to https://www.physicsforums.com/threads/transformation-of-cross-product.384430/ Korn, G. A., and T. M. Korn (2000), Mathematical Handbook for Scientists and Engineers, 2nd ed., Dover, Mineola, N. Y. Kranz, R. L., J. S. Saltzman, and J. D. Blacic (1990), Hydraulic diffusivity measurements on laboratory rock samples using an oscillating pore pressure method, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 27(5), 345– 352, doi: 10.1016/0148-9062(90)92709-N. Kruseman, G. P. and N. A. de Ridder (2000), Analysis and evaluation of pumping test data, Tech. Rep. 47, Int. Inst. for Land Reclamat. and Improv., Wageningen Netherlands, available at http://www2.alterra.wur.nl/Internet/webdocs/ilripublicaties/publicaties/Pub47/Pub47.pdf. Kümpel, H.-J., G. Grecksch, K. Lehmann, D. Rebscher, and K. C. Schulze (1999), Studies of in situ pore pressure fluctuations at various scales, Oil Gas Technol . Rev. IFP, 54(6), 679– 688, doi: 10.2516/ogst:1999057. Latinopoulos, P. (1984), Periodic recharge to finite aquifiers from rectangular areas, Adv. Water Resour., 7(3), 137– 140, doi: 10.1016/0309-1708(84)90043-5. Latinopoulos, P. (1985), Analytical solutions for periodic well recharge in rectangular aquifiers with third-kind boundary conditions, J. Hydrol., 77(1–4), 293– 306, doi: 10.1016/0022-1694(85)90213-6. Lautz, L. K. (2008a), Estimating groundwater evapotranspiration rates using diurnal water-table fluctuations in a semi-arid riparian zone, Hydrogeol. J., 16(3), 483– 497, doi: 10.1007/s10040-007-0239-0. Lautz, L. K. (2008b), Erratum: Estimating groundwater evapotranspiration rates using diurnal water-table fluctuations in a semi-arid riparian zone, Hydrogeol. J., 16(6), 1233– 1235, doi: 10.1007/s10040-008-0338-6. Maddock III, T., and L. B. Vionnet (1998), Groundwater capture processes under a seasonal variation in natural recharge and discharge, Hydrogeol. J., 6(1), 24– 32, doi: 10.1007/s100400050131. Mandelis, A. (2000), Diffusion waves and their uses, Phys. Today, 53(8), 29– 34, doi: 10.1063/1.1310118. Mandelis, A. (2001), Diffusion-Wave Fields: Mathematical Methods and Green Functions, Springer-Verlag, New York. Mandelis, A., L. Nicolaides, and Y. Chen (2001), Structure and the reflectionless/refractionless nature of parabolic diffusion-wave fields, Phys. Rev. Lett., 87(020801), doi: 10.1103/PhysRevLett.87.020801. Marine, I. W. (1975), Water level fluctuations due to Earth tides in a well pumping from slightly fractured crystalline rock, Water Resour. Res., 11(1), 165– 173, doi: 10.1029/WR011i001p00165. Mathematical Society of Japan (2000), Section 18: Almost periodic functions, in Encyclopedic Dictionary of Mathematics, Vol. 1, 2nd., edited by K. Ito, MIT Press, Cambridge, Mass., available at http:/mathsoc.jp/en/pamph/current/dictionary.html. Mehnert, E., A. J. Valocchi, M. Heidari, S. G. Kapoor, and P. Kumar (1999), Estimating transmissivity from the water level fluctuations of a sinusoidally forced well, Ground Water, 37(6), 855– 860, doi: 10.1111/j.1745-6584.1999.tb01184.x. Merritt, M. L. (2004), Estimating hydraulic properties of the floridan aquifer system by analysis of Earth-tide, ocean-tide, and barometric effects, Collier and Hendry Counties, Florida. Water-Resources Investigat. Rep. 03-4267, U.S. Geol. Surv., available at http://pubs.usgs.gov/wri/wri034267/. Monachesi, L. B., and L. Guarracino (2011), Exact and approximate analytical solutions of groundwater response to tidal fluctuations in a theoretical inhomogeneous coastal confined aquifer, Hydrogeol. J., 7, 1443– 1449, doi: 10.1007/s10040-011-y. Morland, L. W., and E. C. Donaldson (1984), Correlation of porosity and permeability of reservoirs with well oscillations induced by Earth tides, Geophys. J. R. Astron. Soc., 79(3), 705– 725, doi: 10.1111/j.1365-246X.1984.tb02864.x. Narasimhan, T. N., B. Y. Kanehiro, and P. A. Witherspoon (1984), Interpretation of Earth tide response of three deep, confined aquifers, J. Geophys. Res., 89(B3), 1913– 1924, doi: 10.1029/JB089iB03p01913. Neeper, D. A. (2001), A model of oscillatory transport in granular soils, with application to barometric pumping and earth tides, J. Contaminant Hydrol., 48(3–4), 237– 252, doi: 10.1016/S0169-7722(00)00181-9. Neeper, D. A. (2002), Investigation of the vadose zone using barometric pressure cycles, J. Contaminant Hydrol., 54(1–2), 59– 80, doi: 10.1016/S0169-7722(01)00146-2. Neeper, D. A. (2003), Harmonic analysis of flow in open boreholes due to barometric pressure cycles, J. Contaminant Hydrol., 60(3–4), 135– 162, doi: 10.1016/S0169-7722(02)00086-4. Neuzil, C. E. (2003), Hydromechanical coupling in geologic processes, Hydrogeol. J., 11(1), 41– 83, doi: 10.1007/s10040-002-0230-8. Noble, B., and J. W. Daniel (1977), Applied Linear Algebra, 2nd ed., Prentice-Hall, Englewood Cliffs, N. J. Nye, J. F. (1957), Physical Properties of Crystals, Oxford Univ. Press, London. Olver, F. W. J., and L. C. Maximon (2016), Bessel functions, in Digital Library of Mathemateical Functions, Chap. 10, Nat. Insti. of Stand. Technol., available at http://dlmf.nist.gov/10, accessed 21 November 2015. Onsager, L. (1931a), Reciprocal relations in irreversible processes, I, Phys. Rev., 37(4), 405– 426, doi: 10.1103/Phys-Rev.37.405. Onsager, L. (1931b), Reciprocal relations in irreversible processes, II, Phys. Rev., 38(12), 2265– 2279, doi: 10.1103/Phys-Rev.38.2265. Oosterbaan, R., J. Boonstra, and K. V. G. K. Rao (1996), The energy balance of groundwater flow, in Int. Conf. Hydrology and Water Resources, 1993, New Delhi IN, vol. 2 of Subsurface-Water Hydrology, edited by V. P. Singh and B. Kumar, pp. 153– 160, Kluwer Academic, Dordrecht, Netherlands, available at http://www.waterlog.info/pdf/enerart.pdf. Özișik, M. N. (1989), Boundary Value Problems of Heat Conduction, Dover, Mineola, N. Y. Philip, J. R. (1979), Note on the Kelvin phase functions, Math Comp., 33(145), 337– 341, doi: 10.1090/S0025-5718-1979-0514829-X. Pool, M., V. E. A. Post, and C. T. Simmons (2014), Effects of tidal fluctuations on mixing and spreading in coastal aquifers: Homogeneous case, Water Resour. Res., 50(8), 6910– 6926, doi: 10.1002/2014WR015534. Protter, M. H., and H. F. Weinberger (1999), Maximum Principles in Differential Equations, 3rd ed., Springer Verlag, New York. Pugh, D. (2004), Changing Sea Levels, Cambridge Univ. Press, Cambridge. Rasmussen, T. C., and L. A. Crawford (1997), Identifying and removing barometric pressure effects in confined and unconfined aquifers, Ground Water, 35(3), 502– 511, doi: 10.1111/j.1745-6584.1997.tb00111.x. Rasmussen, T. C., and T. L. Mote (2007), Monitoring surface and subsurface water storage using confined aquifer water levels at the Savannah River Site, USA, Vadose Zone J., 6(2), 327– 335, 10.2136/vzj2006.0049. Rasmussen, T. C., K. G. Haborak, and M. H. Young (2003), Estimating aquifer hydraulic properties using sinusoidal pumping at the Savannah River Site, South Carolina, USA, Hydrogeol. J., 11(4), 466– 482, doi: 10.1007/s10040-003-0255-7. Renner, J., and M. Messar (2006), Periodic pumping tests, Geophys J. Int., 167(1), 479– 493, doi: 10.1111/j.1365-246X.2006.02984.x. Riddle, D. F. (1974), Calculus and Analytic Geometry, Wadsworth, 2nd ed., Belmont, Calif. Rigord, P., Y. Caristan, and J. P. Hulin (1993), Analysis of porous media heterogeneities using the diffusion of pressure waves, J. Geophys. Res., 98(B6), 9781– 9791, doi: 10.1029/92JB02695. Rinehart, J. S. (1972), Fluctuations in geyser activity caused by variations in Earth tidal forces, barometric pressure and tectonic stresses, J. Geophys. Res., 77(2), 342– 350, doi: 10.1029/JB077i002p00342. Ritzi, Jr., R. W., S. Soorooshian, and P. A. Hsieh (1991), The estimation of fluid flow properties from the response of water levels in wells to the combined atmospheric and Earth tide forces, Water Resour. Res., 27(5), 883– 893, doi: 10.1029/91WR00070. Rojstaczer, S. A. (1988), Determination of fluid flow properties from the response of water levels in wells to atmospheric loading, Water Resour. Res., 24(11), 1927– 1938, doi: 10.1029/WR024i011p01927. Rojstaczer, S. A., and D. C. Agnew (1989), The influence of formation material properties on the reponse of water levels in wells to Earth tides and atmospheric loading, J. Geophys. Res., 94(B9), 12403– 12411, doi: 10.1029/JB094iB09p12403. Rojstaczer, S. A., and F. S. Riley (1990), Response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions, Water Resour. Res., 26(8), 1803– 1817, doi: 10.1029/90WR0021. Rojstaczer, S. A., and F. S. Riley (1992), Correction: Response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions, by S Rojstaczer and FS Riley, Water Resour. Res., 28(5), 1499, doi: 10.1029/92WR00362. Roy, R., and F. W. J. Olver (2016), Elementary functions, in Digital Library of Mathematical Functions, chap. 4, Nat. Inst. of Stand. and Technol., available at http://dlmf.nist.gov/4, accessed 21 November 2015. Roy, R., F. W. J. Olver, R. A. Askey, and R. Wong (2016), Algebraic and analytic methods, in Digital Library of Mathematical Functions, Nati. Inst. of Stand. and Technol., available at http://dlmf.nist.gov/1, accessed 21 November 2015. Salazar, A. (2006), Energy propagation of thermal waves, Eur. J. Phys., 27(6), 1349– 1355, doi: 10.1088/0143-0807/27/6/009. Scales, J. A., and R. Snieder (1999), What is a wave? Nature (Commentary), 401, 739– 740, doi: 10.1038/44453. Seo, H. H. (2001), Modeling the influence of changes in barometric pressure on groundwater levels in wells, Environ. Geol., 41(1–2), 155– 166, doi: 10.1007/s002540100361. Serfes, M. E. (1991), Determining the mean hydraulic gradient of ground water affected by tidal fluctuations, Ground Water, 29(4), 549– 555, doi: 10.1111/j.1745-6584.1991.tb00546.x. Smith, A. J., and L. R. Townley (2015), Surface water-groundwater interaction: Flowthru-periodic, available at http://www.townley.com.au/streaklines/model_demonstrations_files/flowthru_periodic_files/flowthru_periodic.htm,accessed 21 November 2015. Smith, A. J., L. R. Townley, and M. G. Trefry (2005), Visualization of aquifer response to periodic forcing, Adv. Water Resour., 28(8), 819– 834, doi: 10.1016/j.advwatres.2005.02.001. Song, I., and J. Renner (2006), Experimental investigation into the scale dependence of fluid transport in heterogeneous rocks, Pure Appl. Geophys., 163(10), 2103– 2123, doi: 10.1007/s00024-006-0121-3. Song, I., and J. Renner (2007), Analysis of oscillatory fluid flow through rock samples, Geophys. J. Int., 170(1), 195– 204, doi: 10.1111/j.1365-246X.2007.03339.x. Sposito, G. (2006), Chaotic solute advection by unsteady groundwater flow, Water Resour. Res., 42(W06D03), doi: 10.1029/2005WR004518. Stallman, R. W. (1965), Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature, J. Geophys. Res., 70(12), 2821– 2827, doi: 10.1029/JZ070i012p02821. Stewart, C. R., A. Lubinski, and K. A. Blenkarn (1961), The use of alternating flow to characterize porous media having storage pores, J. Petrol. Technol., 13(4), 383– 389, doi: 10.2118/1650-G-PA. Taniguchi, M. (2002), Tidal effects on submarine groundwater discharge into the ocean, Geophys. Res. Lett., 29(12), 2.1– 2.3, doi: 10.1029/2002GL014987. Toll, N. J., and T. C. Rasmussen (2007), Removal of barometric pressure effects and Earth tides from observed water levels, Ground Water, 45(1), 101– 105, doi: 10.1111/j.1745-6584.2006.00254.x. Townley, L. R. (1995), The response of aquifers to periodic forcing, Adv. Water Resour., 18(3), 125– 146, doi: 10.1016/0309-1708(95)00008-7. Trefry, M. G. (1999), Periodic forcing in composite aquifers, Adv. Water Resour., 22(6), 645– 656, doi: 10.1016/S0309-1708(98)00037-2. Trefry, M. G., and E. Bekele (2004), Structural characterization of an island aquifer via tidal methods, Water Resour. Res., 40(W01505), doi: 10.1029/2003WR002003. Trefry, M. G., and C. D. Johnston (1998), Pumping test analysis for a tidally forced aquifer, Ground Water, 36(3), 427– 433, doi: 10.1111/j.1745-6584.1998.tb02813.x. Trefry, M. G., D. McLaughlin, D. R. Lester, G. Metcalfe, C. D. Johnston, and A. Ord (2011), Stochastic relationships for periodic responses in randomly heterogeneous aquifers, Water Resour. Res., 47(W08527), 18, doi: 10.1029/2011WR010444. Trefry, M. G., D. McLaughlin, G. Metcalfe, D. Lester, A. Ord, K. Regenauer-Lieb, and B. Hobbs (2010), On oscillating flows in randomly heterogeneous porous media, Philas. Trans. A, 368(1910), 197– 216, doi: 10.1098/rsta.2009.0186. Urish, D. W., and T. E. McKenna (2004), Tidal effects on ground water discharge through a sandy marine beach, Ground Water, 42(7), 971– 982, doi: 10.1111/j.1745-6584.2004.tb02636.x. Urish, D. W., and M. M. Ozbilgin (1989), The coastal ground-water boundary, Ground Water, 27(3), 310– 315, doi: 10.1111/j.1745-6584.1989.tb00454.x. van der Kamp, G. S., and J. E. Gale (1983), Theory of Earth tide and barometric effects in porous formations with compressible grains, Water Resour. Res., 19(2), 538– 544, doi: 10.1029/WR019i002p00538. Weeks, E. P. (1979), Barometric fluctuations in wells tapping deep unconfined aquifers, Water Resour. Res., 15(5), 1167– 1176, doi: 10.1029/WR015i005p01167. Weisstein, E. (2016a) Euler differential equation, Wolfram Mathworld, http://mathworld.wolfram.com/EulerDifferentialEquation.html, accessed 15 August. Weisstein, E. (2016b) Modified spherical Bessel differential equation, Wolfram Mathworld, http://mathworld.wolfram.com/ModifiedSphericalBesselDifferentialEquation.html, accessed 15 August. Weisstein, E. (2016c) Modified spherical Bessel function of the first kind, Wolfram Mathworld, http://mathworld.wolfram.com/ModifiedSphericalBesselFunctionoftheFirstKind.html, accessed 15 August. Weisstein, E. (2016d) Modified spherical Bessel function of the second kind, Wolfram Mathworld, http://mathworld.wolfram.com/ModifiedSphericalBesselFunctionoftheSecondKind.html, accessed 15 August. Weisstein, E. (2016e) Modified Bessel differential equation,Wolfram Mathworld, http://mathworld.wolfram.com/ModifiedBesselDifferentialEquation.html, accessed 15 August. Weisstein, E. (2016f) Lagrange's identity, Wolfram Mathworld, http://mathworld.wolfram.com/LagrangesIdentity.html, accessed 15 August. Weisstein, E. (2016g) Linearly dependent functions, Wolfram Mathworld, http://mathworld.wolfram.com/LinearlyDependentFunctions.html, accessed 15 August. Yano, Y., S. Nakao, K. Yasukawa, and T. Ishido (2000), Experimental and numerical investigation of sinusoidal pressure test, presented at 25th Workshop on Geothermal Reservoir Engineering, 24–26 January, SGP-TR-165, Stanford Univ. Stanford Calif., available at http://www.geothermalenergy.org/pdf/IGAstandard/SGW/2000/Yano.pdf. Yim, C. S., and M. F. N. Mohsen (1992), Simulation of tidal effects on contaminant transport in porous media, Ground Water, 30(1), 78– 86, doi: 10.1111/j.1745-6584.1992.tb00814.x. Zawadzki, W., D. W. Chorley, and G. Patrick (2002), Capturezone design in an aquifer influenced by cyclic fluctuations in hydraulic gradients, Hydrogeol. J., 10(6), 601– 609, doi: 10.1007/s10040-002-0224-6. Zucker, R. (1972), Elementary transcendental functions: Logarithmic, exponential, circular and hyperbolic functions, in Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun, Chap. 4, Dover, Mineola, N. Y., available at http://files.eric.ed.gov/fulltext/ED250164.pdf. Hydrodynamics of Time-Periodic Groundwater Flow: Diffusion Waves in Porous Media ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX