Amblyopia Revisited
1991; Slack Incorporated (United States); Volume: 28; Issue: 4 Linguagem: Inglês
10.3928/0191-3913-19910701-03
ISSN1938-2405
Autores Tópico(s)Retinal Development and Disorders
ResumoAmblyopia Revisited John T Flynn, MD, , MD John T Flynn, MD Journal of Pediatric Ophthalmology & Strabismus, 2013;28(4):183–201Published Online:July 01, 1991https://doi.org/10.3928/0191-3913-19910701-03Cited by:36PDFView Full Text ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinkedInRedditEmail SectionsMore"Amblyopia Revisited." Journal of Pediatric Ophthalmology & Strabismus, 28(4), pp. 183–2011. Waugh E. Brideshead Revisited: The Sacred and Profane Memories of Captain Charles Ryder. Boston, Masa: Little, Brown & Co; 1945:21. Google Scholar2. EdelmanGM. Topobiology: An Introduction to Molecular Embryology. New York, NY: Basic Books; 1988:17. Google Scholar3. Sidman RL, Rakic P. Development of the human central nervous system. In: Haymaker W, Adams RD (eds). Histology and Histopathology of the Nervous System. Springfield, Dl: Thomas; 1982:7. Google Scholar4. Rakic P. Mode of cell migration to the superficial layers of the fetal monkey neocortex. J Camp Neural. 1972; 145:61-84. Google Scholar5. Rakic P, Specification of cerebral cortical areas. Science. 1988^41:370176. Google Scholar6. Thoenen H, Barde YA, Davies AM, Johnson JE. Neurotrophic factors and neuronal death. Ciba Found Symp. 1987; 126: 82-95. Google Scholar7. O*Leary DDM. Remodeling of early axonal projections through the selective elimination of neurons and long axon collaterals. CiOo Found Symp. 1987;126: 113-142. Google Scholar8. Gage FH, Bjorklund A. Trophic and growth-regulating mechanisms in the central nervous system monitored by intracerebral neural transplants. CiOo Found Symp. 1987 ;126: 140- 159. Google Scholar9. Kostovic I, Rakic P. Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Co/rap Neurol. 1990^97:441-470. Google Scholar10. Molliver ME, Kostovic I, Van der Loos H. The development of synapses in cerebral cortex of the human fetus. Brain Res. 1973;50:403407. Google Scholar11. Kostovic I, Rakic P. Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining. J Neurosa. 1984;4:25-42. Google Scholar12. Huttenlocher PR, DeCourten C, Garey LJ, Van der Looe H. Synaptogenesis in the human visual cortex: evidence for synapse elimination during normal development. Neurosa Lett. 1982;33:247-252. Google Scholar13. Rakic P, Bourgeois JP, Eckenhoff MF, Zecevic N, Goldman-Rakic PS. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science. 1986 ¿232:232-23 5. Google Scholar14. Williams RW, Rakic P. Elimination of neurons from the rhesus monkey's lateral genicolate nucleus during development. J Comp Neural 1988;272:424-436. Google Scholar15. Bourgeois JP, Jastreboff PJ, Rakic P. Synaptogenesis in the visual cortex of normal and preterm monkeys: evidence for intrinsic regulation of synaptic overproduction. Proc Nati Acad Sci USA, 1989;86:4297-4301. Google Scholar16. Rakic P. Prenatal development of the visual system in rhesus monkey. Philos Trans R Soc Lond Biol]. 1977;278:245-260. Google Scholar17. Hubel DH, Wiesel TN. Functional architecture of the macaque monkey visual cortex. Proc R Soc Lond [Biol]. 1977;198:l-59. Google Scholar18. Horton JC, Dagi LR, McC rane EP, de Monasterio FM. Arrangement of ocular dominance columns in human visual cortex. Arch Ophthalmol. 1990; 108: 1025- 1031. Google Scholar19. Hitchcock PF, Hickey TL. Ocular dominance columns: evidence for their presence in humane. Brain Res. 1980; 182: 176- 179. Google Scholar20. Horton JC, Hedley-Whyte ET. Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. Philos Trans R Soc Lond [Biol]. 1984;304:255-272. Google Scholar21. Boothe RG, Dobson V, Teller DY. Postnatal development of vision in humans and nonhuman primates. ATITIU Rev Neurosci. 1985;8:495545. Google Scholar22. Teller DY, McDonald MA, Preston K, Sebris SL, Dobeon V. Assessment of visual acuity in infants and children: the acuity card procedure. Dev Med Child Neurol. 1986;28:779-789. Google Scholar23. Livingstone MS, Hubel DH. Psychophysical evidence for separate visual channels for the perception of form, color, movement, and depth. ,/Afeurosci. 1987;7:34 16-3468. Google Scholar24. Hubel DH. Eye, Brain, and Vision. New York, NY: Scientific American Library; 1988:131. Google Scholar25. Hubel DH. Eye, Brain, and Vision. New York, NY: Scientific American Library; 1988:104. Google Scholar26. De Valois RL, De Valois KK Spatial Vision. New York, NY: Oxford University Press; 1988:147-175. Google Scholar27. Caelli T. Visual Perception: Theory and Practice. Oxford: Pergamon Press; 1981:103-144. Google Scholar28. Wilson HR. Development of spatiotemporal mechanisms in infant vision. Vision Res. 1988;28:61 1-628. Google Scholar29. Banks MS, Stephens BR, Hartman EE. The development of basic mechanisms of pattern vision: spatial frequency channels. J Exp ChUdPsychol. 1985;40:501-627. Google Scholar30. Atkinson J, Braddick O, Moar K. Development of contrast sensitivity over the first 3 months of life in the human infant. Vision Res, 1977; 17:1037-1044. Google Scholar31. Norcia AM, Tyler CW. Spatial frequency sweep VEP: visual acuity during the first year of JiJe. Vision Re* 1985;25:1399-1408. Google Scholar32. Regal DM. Development of critical flicker frequency in human infants. Vision Res. 1 98 1;2 1:549-555. Google Scholar33. Hubel DH, Wiesel TN. Receptive fields of single neurones in the cat striate cortex. J Physiol. 1969;148:674-691. Google Scholar34. Wiesel TN, Hubel DH. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol. 1966;29:1115-1156. Google Scholar35. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962;160: 106-154. Google Scholar36. Hubel DH, Wiesel TN. Stereoscopic vision in macaque monkey. Cells sensitive to binocular depth in area 18 of the macaque monkey cortex. Nature. 1 970 ;225:4 1^42. Google Scholar37. Bishop PO, Henry GH, Smith CJ. Binocular interaction fields of single units in the cat striate cortex. J Physiol. 1971;216:39-68. Google Scholar38. Wiesel TN, Hubel DH. Single-cell responses in the striate cortex of kittens deprived of vision in one eye. J Neurophysiol. 1963;26:10031017. Google Scholar39. Hubel DH. Effects of Deprivation on the Visual Cortex of Cat and Monkey. Harvey Lectures, Series 72. New York, NY: Academic Press; 1978:1-51. Google Scholar40. LeVay S, Wiesel TN, Hubel DH. The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol. 1980; 191: 1-51. Google Scholar41. Wiesel TN. Postnatal development of the visual cortex and the influence of environment. (Nobel Lecture). Nature. 1982;299:583-591. Google Scholar42. Derrington AM, Hawken MJ. Spatial and temporal properties of cat geniculate neurons after prolonged deprivation. J Physiol. 1981;3 14: 107-120. Google Scholar43. Hickey TL. Development of the dorsal lateral geniculate nucleus in normal and visually deprived cats. J Comp Neurol. 1980; 189:467 -481. Google Scholar44. Leventhal AG, Hirsch HVB. Effects of visual deprivation upon the morphology of retinal ganglion cells projecting to the dorsal lateral geniculate nucleus of the cat. J Neurosci. 1983;3:332-344. Google Scholar45. Mangel SC, Wilson JR, Sherman SM. Development of neuronal response properties in the cat dorsal lateral geniculate nucleus during monocular deprivation. J Neurophysiol. 1983;50:240-264. Google Scholar46. Movshon JA, Van Sluyters RC. Visual neural development. Annu Rev Psychol. 1981;32:477-522. Google Scholar47. Pettigrew JD. The effect of visual experience on the development of stimulus specificity by kitten cortical neurones. J Physiol. 1974;237:4974. Google Scholar48. Shapley R, So YT. Is there an effect of monocular deprivation on proportions of X and Y cells in the cat lateral geniculate nucleus? Exp Brain Res. 1980;39:41^8. Google Scholar49. von Noorden GK. Experimental amblyopia in monkeys: further behavioral observations and clinical correlations. Invest Ophthalmol, 1973;12:721-726. Google Scholar50. Dews PB, Wiesel TN. Consequences of monocular deprivation on visual behaviour in kittens. J Physiol. 1970;206:437-455. Google Scholar51. von Noorden GK, Crawford ML. The sensitive period. Transactions of the Ophthalmologic Society of the United Kingdom. 1979;99:442-446, Google Scholar52. von Noorden GK, Crawford ML, Middle-Ditch PR. The effects of monocular visual deprivation: Disuse or binocular interaction? Brain Res. 1976;lll:277-285. Google Scholar53. Crawford MLJ, Blake R, Cool SJ, von Noorden GK. Physiological consequences of unilateral and bilateral eye closure in macaque monkeys; some further observations. Brain fies. 1975;84: 150-154. Google Scholar54. Sherman SM, Spear PD. Organization of visual pathways in normal and visually deprived cats. Physiol Reu 19ß2;62:738-855. Google Scholar55. Sherman SM, Spear PD. Neural development of cats raised with deprivation of visual patterns. In: Rosenberg RN, ed, Willis WD Jr, assoc ed. The Clinical Neurosciences. Section V. Neiirobiology. Edinburgh: Churchill-Livingstone; 1983:V:385-434. Google Scholar56. Sherman SM, Guillery RW1 Kaas JH, Sanderson KJ. Behavioral, electro physiological and morphological studies of binocular competítion in the development of the geniculo-cortical pathways of cats. J Comp Neural. 1974;158:1-18. Google Scholar57. Snyder A, Shapley R. Deficits in the visual evoked potentials of cats as a result of visual deprivation, Exp Brain Bes. 1979;37:73-86. Google Scholar58. von Noorden GK, Crawford MLJ. Form deprivation without light deprivation produces the visual deprivation syndrome in the Maccaca mulatta. Brain Res. 197 7; 129:37-44. Google Scholar59. Jampolsky A. Unequal visual inputs and strabismus management: a comparison of human and animal strabismus. In: Symposium on Strabismus: Transactions of The New Orleans Academy of Ophthalmology. St Louis, Mo: CV Mosby; 1978:358-492. Google Scholar60. Jampolsky A. Characteristics of suppression in strabismus. Arch Ophthalmol. 1955 i54:683-696. Google Scholar61. Wiesel TN, H übel DH. Extent of recovery from the effects of visual deprivation in kittens. J Neurophysiol. 1965 ;28: 1060-1072. Google Scholar62. Ganz L, Fitch M. The effect of visual deprivation on perceptual behavior. Exp Neural. 1968;22:638-660. Google Scholar63. Hubel DH, Wiesel TN. Receptive fields of cells in the striate cortex of very young, visually inexperienced kittens. J Neurophysiol. 1963;26:994-1002. Google Scholar64. Wiesel TN, Hubel DH. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol. 1965;28: 1029-1040. Google Scholar65. Grafetein B. Transneuronal transfer of radioactivity in the central nervous system. Science. 1971;172:177-179. Google Scholar66. Rakic P. Timing of major ontogenetic events in the visual cortex of the rhesus monkey. In: Buchwald NA, Brazier MAB, eds. Brain Mechanisms in Mental Retardation. New York, NY: Academic Press; 1975:3-40. Google Scholar67. Hubel DH. Exploration of the primary visual cortex, 1955-78. Nature. 1982;299:515-524. Google Scholar68. Hubel DH, Wiesel TN, LeVay S. Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Land [Biol]. 1977;278:377-409. Google Scholar69. Guillery RW1 Stelzner DJ. The differential effects of unilateral lid closure upon the monocular and binocular segments of the dorsal lateral genicolate nucleus in the cat. J Comp Neural. 1970;139:413422. Google Scholar70. Guillery RW. Patterns of fiber degeneration in the dorsal lateral genicolate nucleus of the cat following lesions in the visual cortex. J Comp Neural. 1967;130:197-221. Google Scholar71. Sherman SM. Visual field defects in mon ocular! y and binocularly deprived cats. Brain Res. l973;49:25-45. Google Scholar72. Sherman SM, Sprague JM. Effects of visual cortex lesions upon the visual fields of monocularly deprived cats. J Comp Neural. 1979; 188:291 -3 12. Google Scholar73- Hubel DH. Eye, Brain, and Vision. New York, NY: Scientific American Library; 1988:215. Google Scholar74. Campbell FW, Robson JG. Application of Fourier analysis to the visibility of gratings. J Physiol. 1968; 197:55 1-566. Google Scholar75. Clopton B. Neural correlates of development and plasticity in the auditory, somesthetic and olfactory systems. In: Greenough WT, Juraska JM, eds. Developmental Neuropsyckobiology. Orlando, Fla: Academic Press; 1986:363-386. Google Scholar76- Evans EF, Wilson JP. The frequency selectivity of the cochlear. In: MollerARied I.Basic Mechanisms in Hearing. Proceedings of the First Symposium, Stockholm, Sweden, October 30- November 1, 1972. New York, NY: Academic Press; 1973:519-554. Google Scholar77. Miller EF II. The nature and cause of impaired vision in the amblyopic eye of a squinter. American Journal of Optometry. 1954;3 1:615-623. Google Scholar78. Grosvenor T. The effects of duration and background luminance upon the brightness discrimination of an amblyope. American Journal of Optometry. 1957;34:639-663. Google Scholar79. Hess RF, Howell ER. The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification. Vision Res. 1977;17:1049-1055. Google Scholar80. Flynn JT. Spatial summation in amblyopia. Arch Ophthalmol. 1967;78:470-474. Google Scholar81. Lawwill T, Burian HM. Luminance, contrast function and visual acuity in functional amblyopia. Am J Ophthalmol. 1966;62:51 1-520. Google Scholar82 Bradley A, Freeman RD. Contrast sensitivity in anisometropie amblyopia. Invest Ophthalmol Vis Sd. 198 1;2 1:467-476. Google Scholar83. HiIz R, Rentschier l, Brettel H. Myopic and strabismic amblyopia: substantial differences in human visual development. Exp Brain Res. 1977;30:445-446. Google Scholar84. Thomas J. Normal and amblyopic contrast sensitivity function in central and peripheral retinas. Invest Ophthalmol Vis Sci. 1978;17:746753. Google Scholar85. Gestalder RJ, Green DG. Laser interferoni et rie acuity in amblyopia. J Pediatr Ophthalmol Strabismus. 1971;8:251-256. Google Scholar86. Levi DM, Klein S. Differences in vernier discrimination for gratings between strabismic and anisometropie amblyopes. Invest Ophthalmol Vis Sci. 1982;23:398-407. Google Scholar87. Selenow A, Cuiflreda KJ, Mozlin R, Rumpf D. Prognostic value of laser interferometric visual acuity in amblyopia therapy. Invest Ophthalmol Vis Sci. 1986;27:273-277. Google Scholar88. Rothman KJ. Causes. Am J Epidemial. 1976;104:587-592. Google Scholar89. Westheimer G. Visual acuity and hyperacuity. Invest Ophthalmol. 1975;14:570-572. Google Scholar90. Levi DM, Klein SA. Hyperacuity and amblyopia. Nature. 1982;298:268270. Google Scholar91. Mayer DL. Acuity of amblyopic children for small field gratings and recognition of stimuli. Invest Ophthalmol Vis Sci. 1986;27:1148-1153. Google Scholar92. Klein SA, Levi DH. Hyperacoity thresholds of 1 sec: theoretical predictions and empirical validation. J Opt Soc Am [A]. 1985;2:11701190. Google Scholar93. Westheimer G1 McKee SP. Visual acuity in the presence of retinalimage motion. J Opt Sac Am. 1975;65:847-850. Google Scholar94. Levi DM, Klein SA, Aitsebaomo AP. Vernier acuity, crowding and cortical magnification. Vision Res. 1985;25:963-977. Google Scholar95. Morgan MJ, Watt RJ, McKee SP. Exposure duration affects the sensitivity of vernier acuity to target motion. Vision Res. 1983;23:541546. Google Scholar96. McKee SP, Levi DM. Dichoptic hyperacuity: the precision of nonius alignment. J Opt Soc Am [A]. 1987;4:1104-1108. Google Scholar97. MÍUT D. Vision.· A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco, Calif: WH Freeman; 1982. Google Scholar98. Watt RJ, Morgan MJ. A theory of the primitive spatial code in human vision. Vision fies. 1985;25:1661-1674. Google Scholar99. Levi DM, Klein SA, Yap YL. Positional uncertainty in peripheral and amblyopic vision. Vision fies. 1987;27:581-597. Google Scholar100. Levi DM, Klein SA. Vernier acuity, crowding and amblyopia. Vision fies. 1985;25:979-991. Google Scholar101. Levi DM. The 'spatial grain" of the amblyopic visual system: the Glenn A. Fry Award Lecture. American Journal of Optometry and Physiological Optics. 1988;65:767-786. Google Scholar102. Barlow HB. Critical limiting factors in the design of the eye and visual cortex. Proc R Soc Land [Biol]. 1981:212:1-34. Google Scholar103. Jennings JAM, Charman WN. Off-axis image quality in the human eye. Vision Res. 198 1;2 1:445-455. Google Scholar104. Shapley RM. The importance of contrast for the activity of single neurons, the VEP and perception. Vision fies. 1986;26:45-61, Google Scholar105. Wilson HR. Responses of spatial mechanisms can explain hyperacuity. Vision Res. 1986;26:453-469. Google Scholar106. Braddick O, Campbell FW, Atkinson J. Channels in vision: basic aspects. In: Held R. Leibowitz HW Teuber HL, eds. Perception. Handbook of Sensory Physiology. New York, NY: Springer; 1978;8:338. Google Scholar107. Graham N. Spatial frequency channels in human vision: detecting edges without edge detectors. In: Harris CS. ed. Visual Coding and Adaptability. Hillsdale, NJ: Erlbaum; 1980:215-262. Google Scholar108. Dow BM, Snyder AZ, Vautin RG. Bauer R. Magnification factor and receptive field size in fovea! striate cortex of the monkey. Exp Brain Res. 198 1 ;44:2 13-228. Google Scholar109. Hubel DH, Wiesel TN. Binocular interaction in the striate cortex of kittens reared with artificial squint. J Neurophysiol. 1965;28:10411059. Google Scholar110. Poggio GF, Fischer B. Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkeys. J Neuraphyslol. 1977;40: 1392-1405. Google Scholar111. Crawford MLJ, von Noorden GK. Concomitant strabismus and cortical eye dominance in young rhesus monkeys. Transactions of the Ophthalmologic Society of the United Kingdom. 1979;99:369-374. Google Scholar112. Blasdel GG, Visualization of neuronal activity in monkey striate cortex. Anna Rev Physiol. 1989;51:561-581. Google Scholar113. Vision research: a national plan: 1992-1996. In: The 1991 Report of the National Advisory Eye Council. Sept 1990;2. Publication pending. Google Scholar114. Vesalius A. De Humant Corporis Fabrica... Basìleae. [ex officina Joannis Oporini], 1543. Google Scholar115. Churchland PS, Sejnowski TJ. Perspectives on cognitive neuroscience. Science. 1988;242:741-745. Google Scholar116. Cline HT, Debski EA. Constantine-Paton M. N-methyl-D-aspartate receptor antagonist desegregates eye-specific stripes. Proc Nati Acad Sci USA. 198734:4342-4345. Google Scholar117. Gustafsson B, Wigstrom H. Physiological mechanisms underlying long-term potentiation. Trends Neu road. 1988;11:156-162. Google Scholar118. Bear MF, Kleinschmidt A, Gu QA, Singer W. Disruption of experiencedependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist. J Neurosci. 1990;10:909-925. Google Scholar119. Cotman CW, Monaghan DT, Ganong AH. Excitatory amino acid neurotransmission: NMDA and Hebb-type synaptic plasticity. Annu Rev Neurosci. 1988;11:61-80. Google Scholar120. Bliss TVP, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973, -23 2:33 1-356. Google Scholar121. Brown TH, Chapman PF, Kairias EW, Keenan CL. Long-term synaptic potentiation. Science. 1988 £42: 7 24- 728. Google Scholar122. Brown TH, Kairiss EW, Keenan CL. Hebbian synapses: biophysical mechanisms and algorithms. Annu Rev Neurosci. 1990;13:475-511. Google Scholar123. Hebb DO. The Organization of Behavior; A Neuropsychological Theory. New York, NY: Wiley & Co; 1949. Google Scholar124. Harrelson AL, Goodman CS. Growth cone guidance: fasciclin II is a member of the immunoglobulin superfamily. Science. 1988;242:7QO708. Google Scholar125. Snow PM, Zinn K, Harrelson AL, et al. Characterization and cloning of fasciclin I and fasciclin II glycoproteinB in the grasshopper. Proc NatlAcadSci USA. 1988;85:5291-5295. Google Scholar126. Dodd J, Jessell TM. Axon guidance and the patterning of neuronal projections in vertebrates. Science. 1988;242:692-699. Google Scholar127. Smith SJ. Neuronal cytomechanics: the actin-based motility of growth cones. Science. 1988;242:708-7l5. Google Scholar128. Ramoa AS, Campbell G, Shatz CJ. Transient morphological features of identified ganglion cells in living fetal and neonatal retina. Science. 1987;237:522-525. Google Scholar129. Jacobson RD, Virag 1, Skene JHP. A protein associated with axon growth, GAP-43, is widely distributed and deve lop mentally regulated in the rat CNS. J Neurosci. 1986;6: 1843-1855. Google Scholar130. Benowitz LI, Routtenberg A. A membrane phosphoprotein associated with neural development, axonal regeneration, phospholipid metabolism, and synaptic plasticity. Trends Neurosci. 1987;10:527-532. Google Scholar131. Benowitz LI, Yoon MG, Lewis ER. Transported proteins in the regenerating optic nerve: regulation by interactions with the optic tectum. Science. 1983 ;222: 185- 188. Google Scholar132. Skene JHP, Willard M. Changes in axonally-transported proteins during axon regeneration in toad retinal ganglion cells. J Cell Biol. 1981;89:86-95. Google Scholar133. Krueger DE, Ederer F. Report on the National Eye Institute's Visual Acuity Impairment Survey Pilot Study. Bethesda, Md: Office of Biometry and Epidemiology, National Eye Institute, National Institutes of Health, Public Health Service, Department of Health and Human Services; 1984. Google Scholar134. Wegman ME. Annual summary of vital statistics - 1988. Pediatrics. 1989;84:943-956; Erratum- Pedia t ries. 1990;85:302. Google Scholar135. Howland HC. Infant eyes: optics and accommodation. Curr Eye Res. 1982-83;2:217-224. Google Scholar136. Howland HC, Sayles N. Photo refractive measurements of astigmatism in infants and young children. Invest Ophthalmol Vis Sd. 1984;25:93-102. Google Scholar137. Howland HC, Howland B. Photorefraction: a technique for the study of refractive state at a distance. J Opt SocAm. 1974;64:240-249. Google Scholar138. H QW Jan d HC, B rad dick O, Atkinaon J, Howland B. Optics of photorefraction: orthogonal and isotropie methods. J Opt Soc Am. 1983;73:170M708. Google Scholar139. Kennedy RA, Sheps SB. A comparison of photoscreening techniques for amblyogenic factors in children. Con J Ophthalmol. 1989;24:259264. Google Scholar140. Molteno ACB, Hoare-Nairne J, Parr JC, et al. The Otago photoscreener: a method for mass screening of infants to detect squint and refractive errors. Transactions of the Ophthalmologic Society of New Zealand. 1983;35:43-49. Google Scholar141. Ingram RM, Walker C, Wilson JM, Arnold PE, Dally S. Predictions of amblyopia and squint by means of refraction at age 1 year. Br J Ophthalmol. 1986;70:12-15. Google Scholar142. Ingram RM, Holland WW, Walker C, Wilson JM, Arnold PE, Dally S. Screening for visual defects in pre-school children. Br J Ophthalmol. 1986;70:16-21. Google Scholar143. Atkinson J, Braddick O. Visual screening and photorefraction - the relation of refractive errors to strabismus and amblyopia. Behav Brain Res. 1983;10:71-80. Google Scholar144. Atkinson J, Braddick O, French J. Infant astigmatism: its disappearance with age. Vision Res. 1980;20:891-893. Google Scholar145. Norcia AM, Tyler CW, Alien D. Electrophysiological assessment of contrast sensitivity in human infants. American Journal ofOptometry and Physiological Optics. 1986;63:12-15. Google Scholar146. Hamer RD, Norcia AM, Tyler CW, Hsu-Winges C. The development of monocular and binocular VEP acuity. Vision Res. 1989;29:397-408. Google Scholar147. Norcia AM, Tyler CW, Hamer RD, Wesemann W. Measurement of spatial contrast sensitivity with the swept contrast VEP, Vision Res. 1989;29:627-637. Google Scholar148. McDonald MA, Dobson V, Sebris SL, Baitch L, Varner D, Teller DY. The acuity card procedure: a rapid test of infant acuity. Invest Ophthalmol Vis Sd. 1985;26: 1158-1162. Google Scholar149. Teller DY, McDonald MA, Preston K, Sebris SL, Dobson V. Assessment of visual acuity in infants and children: the acuity card procedure. Dev Med ChildNeurot. 1986 £8:7 79- 7 89. Google Scholar150. Preston KL, McDonald M, Sebris SL, Dobson V, Teller DY. Validation of the acuity card procedure for assessment of infants with ocular disorders. Ophthalmology. 198 7 ;9 4:644-653. Google Scholar151. Hertz BG. Acuity card testing of retarded children. Be ??? Brain Res. 1987;24:85-92. Google Scholar152. Hennekins CH, Burring JE. Screening. In: Mayrent SL, ed. Epidemiology in Medicine. Boston, Mass: Little Brown & Co; 1987:327-347. Google Scholar153. Roback G, Randolph L1 Seidman B, Mead D. Physician Characteristics and Distribution in the United States. Chicago, 111: Survey & Data Resources, American Medical Association; 1987. Google Scholar154. Morrison AS. Case definition in case-control studies of the efficacy of screening. Am J Epidemial. 1982;! 15:6-8. Google Scholar155. Cole P, Morrison AS. Basic issues in population screening for cancer. J Nati Cancer Inst. 1980;64: 1263-1272. Google Scholar156. American Academy of Pediatrics Proposal for Universal Access to Health Care for Children and Pregnant Women, April 1990. Google Scholar157. Goethe JW. Zur Farbenlehre. Tübingen Gj: Cotta'schen Buchhandlung; 1810. Google Scholar158. Lincoln A. First inaugural address, March 4, 1861. In: Fehrenbacher DE, ed. Lincoln: Speeches and Writings, 1859-1865. New York, NY: Library of America; 1990:224. Google Scholar Next article FiguresReferencesRelatedDetailsCited by (2022) References Pickwell's Binocular Vision Anomalies, 10.1016/B978-0-323-73317-5.00024-5, (307-354), . Vagge A, Shields C, Shields J, Pointdujour-Lim R and Schnall B (2019) Visual improvement in amblyopic eye following treatment-induced vision loss in dominant eye with uveal melanoma, British Journal of Ophthalmology, 10.1136/bjophthalmol-2018-313505, 104:2, (202-207), Online publication date: 1-Feb-2020. Kushner B (2017) Functional Amblyopia Strabismus, 10.1007/978-3-319-63019-9_4, (31-50), . Narasimhan S, Harrison E and Giaschi D (2012) Quantitative measurement of interocular suppression in children with amblyopia, Vision Research, 10.1016/j.visres.2012.06.007, 66, (1-10), Online publication date: 1-Aug-2012. Gräf M, Alhammouri Q, Vieregge C and Lorenz B (2011) The Brückner Transillumination Test, Ophthalmology, 10.1016/j.ophtha.2011.05.016, 118:12, (2504-2509), Online publication date: 1-Dec-2011. Walker R, Rubab S, Voll A, Erraguntla V and Murphy P (2011) Macular and peripapillary retinal nerve fibre layer thickness in adults with amblyopia, Canadian Journal of Ophthalmology, 10.1016/j.jcjo.2011.07.013, 46:5, (425-427), Online publication date: 1-Oct-2011. Gräf M (2010) The Brückner Test Revisited Pediatric Ophthalmology, Neuro-Ophthalmology, Genetics, 10.1007/978-3-540-85851-5_9, (113-124), . Nazem F, Markowitz S and Kraft S (2008) Treatment of anisometropic amblyopia in older children using macular stimulation with telescopic magnification, Canadian Journal of Ophthalmology, 10.3129/i07-184, 43:1, (100-104), Online publication date: 1-Feb-2008. Atilla H (2008) FUNCTIONAL AMBLYOPIA 368.0 Roy and Fraunfelder's Current Ocular Therapy, 10.1016/B978-1-4160-2447-7.50118-3, (213-215), . Gräf M and Jung A (2007) The Brückner test: extended distance improves sensitivity for ametropia, Graefe's Archive for Clinical and Experimental Ophthalmology, 10.1007/s00417-007-0608-3, 246:1, (135-141), Online publication date: 19-Nov-2007. Duranoglu Y (2007) Optic Nerve Head Topographic Analysis and Retinal Nerve Fiber Layer Thickness in Strabismic and Anisometropic Amblyopia, Annals of Ophthalmology, 10.1007/s12009-007-9014-z, 39:4, (291-295), Online publication date: 7-Nov-2007. Roper-Hall G (2017) Current Concepts of Amblyopia: A Neuro-Ophthalmology Perspective, American Orthoptic Journal, 10.3368/aoj.57.1.2, 57:1, (2-12), Online publication date: 1-Jan-2007. (2007) References Pickwell's Binocular Vision Anomalies, 10.1016/B978-0-7506-8897-0.50036-6, (386-432), . Bonhomme G, Liu G, Miki A, Francis E, Dobre M, Modestino E, Aleman D and Haselgrove J (2006) Decreased cortical activation in response to a motion stimulus in anisometropic amblyopic eyes using functional magnetic resonance imaging, Journal of American Association for Pediatric Ophthalmology and Strabismus, 10.1016/j.jaapos.2006.07.008, 10:6, (540-546), Online publication date: 1-Dec-2006. Hartmann E, Bradford G, Nottingham Chaplin P, Johnson T, Kemper A, Kim S and Marsh-Tootle W (2006) Project Universal Preschool Vision Screening: A Demonstration Project, Pediatrics, 10.1542/peds.2004-2809, 117:2, (e226-e237), Online publication date: 1-Feb-2006. France L (2017) Evidence-Based Guidelines for Amblyogenic Risk Factors, American Orthoptic Journal, 10.3368/aoj.56.1.7, 56:1, (7-14), Online publication date: 1-Jan-2006. Cordonnier M and Maertelaer V (2009) Screening for Amblyogenic Factors in Preschool Children with the Retinomax Hand-Held Refractor: Do Positive Children Have Amblyopia and Is Treatment Efficacious?, Strabismus, 10.1080/09273970590901829, 13:1, (27-32), Online publication date: 1-Jan-2005. Jones D, Westall C, Averbeck K and Abdolell M (2003) Visual acuity assessment: a comparison of two tests for measuring children's vision, Ophthalmic and Physiological Optics, 10.1046/j.1475-1313.2003.00150.x, 23:6, (541-546), Online publication date: 1-Nov-2003. Mittelman D (2003) Amblyopia, Pediatric Clinics of North America, 10.1016/S0031-3955(02)00107-4, 50:1, (189-196), Online publication date: 1-Feb-2003. Ohlsson J, Villarreal G, Sjöström A, Abrahamsson M and Sjöstrand J (2002) Visual acuity, residual amblyopia and ocular pathology in a screened population of 12-13-year-old children in Sweden, Acta Ophthalmologica Scandinavica, 10.1034/j.1600-0420.2001.790609.x, 79:6, (589-595), Online publication date: 1-Dec-2001. Enzenauer R, Freeman H, Larson M and Williams T (2009) Photoscreening for amblyogenic factors by public health personnel: the Eyecor Camera System, Ophthalmic Epidemiology, 10.1076/0928-6586(200003)711-2FT001, 7:1, (1-12), Online publication date: 1-Jan-2000. Stevens A and Baker R (2021) Considerations in the routine assessment and treatment of anisometropic amblyopia, Clinical and Experimental Optometry, 10.1111/j.1444-0938.1999.tb06787.x, 82:4, (111-118), Online publication date: 8-Jul-1999. Simons B, Siatkowski R, Schiffman J, Berry B and Flynn J (1999) Pediatric photoscreening for strabismus and refractive errors in a high-risk population, Ophthalmology, 10.1016/S0161-6420(99)90243-9, 106:6, (1073-1080), Online publication date: 1-Jun-1999. Sjöstrand J and Abrahamsson M (2018) Prevention of Amblyopia and the Concept of Cure, European Journal of Ophthalmology, 10.1177/112067219700700201, 7:2, (121-129), Online publication date: 1-Apr-1997. Morgan K and Kennemer J (1997) Off-axis photorefractive eye screening in children, Journal of Cataract and Refractive Surgery, 10.1016/S0886-3350(97)80188-5, 23:3, (423-428), Online publication date: 1-Apr-1997. Campos E and Schiavi C (2018) Does Amblyopia Protect against Age-Related Maculopathy?, American Orthoptic Journal, 10.1080/0065955X.1997.11982118, 47:1, (86-90), Online publication date: 1-Jan-1997. Cooper C, Bowling F, Hall J, Colville D, Dortmans R, Munch J and Gole G Evaluation of photoscreener instruments in a childhood population: 1. Otago photoscreener and Dortmans videophotorefractor, Australian and New Zealand Journal of Ophthalmology, 10.1111/j.1442-9071.1996.tb01606.x, 24:4, (347-355) Latvala M, Paloheimo M and Karma A (2009) Screening of amblyopic children and long-term follow-up, Acta Ophthalmologica Scandinavica, 10.1111/j.1600-0420.1996.tb00605.x, 74:5, (488-492) Campos E (1995) Amblyopia, Survey of Ophthalmology, 10.1016/S0039-6257(95)80044-1, 40:1, (23-39), Online publication date: 1-Jul-1995. Campos E (2009) Update on strabismus and amblyopia, Acta Ophthalmologica Scandinavica, 10.1111/j.1600-0420.1995.tb00583.x, 73:S214, (17-24) Colville D and Savige J Albipunctatus retinopathy in inherited interstitial nephritis, Australian and New Zealand Journal of Ophthalmology, 10.1111/j.1442-9071.1994.tb00795.x, 22:4, (267-269) Elder M Occlusion therapy for strabismic amblyopia, Australian and New Zealand Journal of Ophthalmology, 10.1111/j.1442-9071.1994.tb01715.x, 22:3, (187-191) Demer J (1993) Positron emission tomographic studies of cortical function in human amblyopia, Neuroscience & Biobehavioral Reviews, 10.1016/S0149-7634(05)80125-3, 17:4, (459-467), Online publication date: 1-Dec-1993. Helveston E (1993) 19th Annual Frank Costenbader Lecture-The Origins of Congenital Esotropia, Journal of Pediatric Ophthalmology & Strabismus, 30:4, (215-232), Online publication date: 1-Jul-1993. Freedman H and Preston K (1992) Polaroid Photoscreening for Amblyogenic Factors, Ophthalmology, 10.1016/S0161-6420(92)31722-1, 99:12, (1785-1795), Online publication date: 1-Dec-1992. Gregg F and Parks M (1992) Stereopsis After Congenital Monocular Cataract Extraction, American Journal of Ophthalmology, 10.1016/S0002-9394(14)71797-0, 114:3, (314-317), Online publication date: 1-Sep-1992. Request Permissions InformationCopyright 2013, SLACK IncorporatedPDF download
Referência(s)