Station-Keeping of L2 Halo Orbits Under Sampled-Data Model Predictive Control
2022; American Institute of Aeronautics and Astronautics; Volume: 45; Issue: 7 Linguagem: Inglês
10.2514/1.g006349
ISSN1533-3884
AutoresMohamed Elobaid, Mattia Mattioni, S. Monaco, D. Normand‐Cyrot,
Tópico(s)Catalytic Processes in Materials Science
ResumoNo AccessEngineering NotesStation-Keeping of L2 Halo Orbits Under Sampled-Data Model Predictive ControlMohamed Elobaid, Mattia Mattioni, Salvatore Monaco and Dorothée Normand-CyrotMohamed Elobaid https://orcid.org/0000-0003-3446-288XSapienza University of Rome, 00185 Rome, Italy*Ph.D. Student, Department of Computer, Control and Management Engineering and L2S, via Ariosto 25; ; (Corresponding Author).Search for more papers by this author, Mattia Mattioni https://orcid.org/0000-0002-9407-7521Sapienza University of Rome, 00185 Rome, Italy†Researcher, Department of Computer, Control and Management Engineering, via Ariosto 25; .Search for more papers by this author, Salvatore Monaco https://orcid.org/0000-0002-2723-5737Sapienza University of Rome, 00185 Rome, Italy‡Full Professor, Department of Computer, Control and Management Engineering, via Ariosto 25; .Search for more papers by this author and Dorothée Normand-Cyrot https://orcid.org/0000-0002-0642-1549CNRS, CentraleSupelec, University of Paris Saclay, 91192 Gif-sur-Yvette, France§Directeur de Recherche, Laboratory of Signals and Systems (L2S, UMR 8506), 3 Rue Joliot Curie; .Search for more papers by this authorPublished Online:24 Mar 2022https://doi.org/10.2514/1.G006349SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Poincaré H., Les Méthodes Nouvelles De La Mécanique Céleste: Méthodes de MM. Newcomb, Glydén, Lindstedt et Bohlin, Vol. 2, Gauthier-Villars it fils, Paris, 1893, Chap. 1. Google Scholar[2] Barrow-Green J., Poincaré and the Three Body Problem, 11th ed., American Mathematical Soc., New York, 1997, Chaps. 2, 3. https://doi.org/10.1006/hmat.1999.2236 Google Scholar[3] Farquhar R. W., The Control and Use of Libration-Point Satellites, Vol. 346, NASA, 1970, pp. 63–64. Google Scholar[4] Wu W., Tang Y., Zhang L. and Qiao D., “Design of Communication Relay Mission for Supporting Lunar-Farside Soft Landing,” Science China Information Sciences, Vol. 61, No. 4, 2018, pp. 1–14. https://doi.org/10.1007/s11432-017-9202-1 Google Scholar[5] Farquhar R. W., The Utilization of Halo Orbits in Advanced Lunar Operations, Vol. 6365, NASA, 1971, pp. 29–30. Google Scholar[6] Woodard M., Folta D. and Woodfork D., “ARTEMIS: The First Mission to the Lunar Libration Orbits,” 21st International Symposium on Space Flight Dynamics, ISSFD, Toulouse, France, 2009, pp. 1–2. Google Scholar[7] Harvey B., China in Space, The Great Leap Forward, 2nd ed., Springer, New York, 2019, pp. 443–496, Chap. 9. Google Scholar[8] Bobskill M. and Lupisella M., “The Role of Cislunar Space in Future Global Exploration,” AIAA Global Space Exploration Conference, AIAA, Reston, VA, 2012. Google Scholar[9] Gómez G., Llibre J., Martnez R. and Simó C., Dynamics and Mission Design Near Libration Points, World Scientific Singapore, Singapore, 2001, Vol. 1, Chap. 5. https://doi.org/10.1142/4402 Google Scholar[10] Zimovan-Spreen E. M., Howell K. C. and Davis D. C., “Near Rectilinear Halo Orbits and Nearby Higher-Period Dynamical Structures: Orbital Stability and Resonance Properties,” Celestial Mechanics and Dynamical Astronomy, Vol. 132, No. 5, 2020, pp. 1–25. https://doi.org/10.1007/s10569-020-09968-2 CrossrefGoogle Scholar[11] Shirobokov M., Trofimov S. and Ovchinnikov M., “Survey of Station-Keeping Techniques for Libration Point Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 5, 2017, pp. 1085–1105. https://doi.org/10.2514/1.G001850 LinkGoogle Scholar[12] Howell K. C. and Pernicka H. J., “Station-Keeping Method for Libration Point Trajectories,” Journal of Guidance, Control, and Dynamics, Vol. 16, No. 1, 1993, pp. 151–159. https://doi.org/10.2514/3.11440 LinkGoogle Scholar[13] Simó C., Gómez G., Llibre J., Martinez R. and Rodriguez J., “On the Optimal Station Keeping Control of Halo Orbits,” Acta Astronautica, Vol. 15, Nos. 6–7, 1987, pp. 391–397. https://doi.org/10.1016/0094-5765(87)90175-5 CrossrefGoogle Scholar[14] Folta D. and Vaughn F., “A Survey of Earth-Moon Libration Orbits: Station Keeping Strategies and Intra-Orbit Transfers,” AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA Paper 2004-4741, 2004. https://doi.org/10.2514/6.2004-4741 Google Scholar[15] Breakwell J. V., Kamel A. A. and Ratner M. J., “Station-Keeping for a Translunar Communication Station,” Celestial Mechanics, Vol. 10, No. 3, 1974, pp. 357–373. https://doi.org/10.1007/BF01586864 CrossrefGoogle Scholar[16] Folta D. C., Pavlak T. A., Haapala A. F., Howell K. C. and Woodard M. A., “Earth–Moon Libration Point Orbit Station Keeping: Theory, Modeling, and Operations,” Acta Astronautica, Vol. 94, No. 1, 2014, pp. 421–433. https://doi.org/10.1016/j.actaastro.2013.01.022 CrossrefGoogle Scholar[17] Ulybyshev Y., “Long-Term Station Keeping of Space Station in Lunar Halo Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 6, 2015, pp. 1063–1070. https://doi.org/10.2514/1.G000242 LinkGoogle Scholar[18] Rahmani A., Jalali M.-A. and Pourtakdoust S., “Optimal Approach to Halo Orbit Control,” AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA Paper 2003-5748, 2003. https://doi.org/10.2514/6.2003-5748 Google Scholar[19] Bando M. and Ichikawa A., “Formation Flying Along Halo Orbit of Circular-Restricted Three-Body Problem,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 1, 2015, pp. 123–129. https://doi.org/10.2514/1.G000463 LinkGoogle Scholar[20] Kalabic U., Weiss A., Di Cairano S. and Kolmanovsky I., “Station-Keeping and Momentum-Management on Halo Orbits Around L2: Linear-Quadratic Feedback and Model Predictive Control Approaches,” Proceedings of AAS Space Flight Mechanics Meeting, Inst. of Electrical and Electronics Engineers, New York, 2015, pp. 15–307. Google Scholar[21] Misra G., Peng H. and Bai X., “Halo Orbit Station-Keeping Using Nonlinear MPC and Polynomial Optimization,” 2018 Space Flight Mechanics Meeting, AIAA Paper 2018-1454, 2018. https://doi.org/10.2514/6.2018-1454 Google Scholar[22] Zhang H. and Li S., “Station-Keeping of Libration Point Orbits by Means of Projecting to the Manifolds,” Acta Astronautica, Vol. 163, Oct. 2019, pp. 38–44. https://doi.org/10.1016/j.actaastro.2018.12.002 CrossrefGoogle Scholar[23] Di Giamberardino P. and Monaco S., “On Halo Orbits Spacecraft Stabilization,” Acta Astronautica, Vol. 38, No. 12, 1996, pp. 903–925. https://doi.org/10.1016/S0094-5765(96)00082-3 CrossrefGoogle Scholar[24] Qi Y. and de Ruiter A., “Station-Keeping Strategy for Real Translunar Libration Point Orbits Using Continuous Thrust,” Aerospace Science and Technology, Vol. 94, Nov. 2019, Paper 105376. https://doi.org/10.1016/j.ast.2019.105376 Google Scholar[25] Celsi L. R., Bonghi R., Monaco S. and Normand-Cyrot D., “Sampled-Data Stabilization Around the L2 Translunar Libration Point,” 3rd IAA Conference on University Satellite Missions and CubeSat Workshop and International Workshop on LEAN Satellite Standardization, 2015. Google Scholar[26] Elobaid M., Mattioni M., Monaco S. and Normand-Cyrot D., “On Unconstrained MPC Through Multirate Sampling,” IFAC-Papers Online, Vol. 52, No. 16, 2019, pp. 388–393. https://doi.org/10.1016/j.ifacol.2019.11.811 Google Scholar[27] Grüne L. and Pannek J., “Nonlinear Model Predictive Control,” Nonlinear Model Predictive Control, Communications and Control Engineering Series, Springer, Cham, Switzerland, 2017, pp. 45–69. https://doi.org/10.1007/978-3-319-46024-6_3 Google Scholar[28] Richardson D. L., “Analytic Construction of Periodic Orbits About the Collinear Points,” Celestial Mechanics, Vol. 22, No. 3, 1980, pp. 241–253. https://doi.org/10.1007/BF01229511 CrossrefGoogle Scholar[29] Doedel E. J., Romanov V. A., Paffenroth R. C., Keller H. B., Dichmann D. J., Galán-Vioque J. and Vanderbauwhede A., “Elemental Periodic Orbits Associated with the Libration Points in the Circular Restricted 3-Body Problem,” International Journal of Bifurcation and Chaos, Vol. 17, No. 8, 2007, pp. 2625–2677. https://doi.org/10.1142/S0218127407018671 CrossrefGoogle Scholar[30] Carletta S., Pontani M. and Teofilatto P., “Dynamics of Three-Dimensional Capture Orbits from Libration Region Analysis,” Acta Astronautica, Vol. 165, Dec. 2019, pp. 331–343. https://doi.org/10.1016/j.actaastro.2019.09.019 CrossrefGoogle Scholar[31] Gurfil P. and Meltzer D., “Semi-Analytical Method for Calculating the Elliptic Restricted Three-Body Problem Monodromy Matrix,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 1, 2007, pp. 266–271. https://doi.org/10.2514/1.22871 LinkGoogle Scholar[32] Francis B. A. and Wonham W. M., “The Internal Model Principle of Control Theory,” Automatica, Vol. 12, No. 5, 1976, pp. 457–465. https://doi.org/10.1016/0005-1098(76)90006-6 CrossrefGoogle Scholar[33] Francis B. A., “The Linear Multivariable Regulator Problem,” SIAM Journal on Control and Optimization, Vol. 15, No. 3, 1977, pp. 486–505. https://doi.org/10.1137/0315033 CrossrefGoogle Scholar[34] Isidori A. and Byrnes C. I., “Output Regulation of Nonlinear Systems,” IEEE Transactions on Automatic Control, Vol. 35, No. 2, 1990, pp. 131–140. https://doi.org/10.1109/9.45168 CrossrefGoogle Scholar[35] Monaco S. and Normand-Cyrot D., “An Introduction to Motion Planning Under Multirate Digital Control,” Proceedings of the 31st IEEE Conference on Decision and Control, Inst. of Electrical and Electronics Engineers, New York, 1992, pp. 1780–1785. https://doi.org/10.1109/CDC.1992.371122 Google Scholar[36] Mayne D. Q., Rawlings J. B., Rao C. V. and Scokaert P. O., “Constrained Model Predictive Control: Stability and Optimality,” Automatica, Vol. 36, No. 6, 2000, pp. 789–814. https://doi.org/10.1016/S0005-1098(99)00214-9 CrossrefGoogle Scholar[37] Monaco S., Normand-Cyrot D. and Stornelli S., “On the Linearizing Feedback in Nonlinear Sampled Data Control Schemes,” 25th IEEE Conference on Decision and Control, Inst. of Electrical and Electronics Engineers, New York, 1986, pp. 2056–2060. Google Scholar[38] Raff T., Ebenbauer C., Findeisen R. and Allgöwer F., “Nonlinear Model Predictive Control and Sum of Squares Techniques,” Fast Motions in Biomechanics and Robotics, Springer, Berlin, 2006, pp. 325–344. https://doi.org/10.1007/978-3-540-36119-0_15 CrossrefGoogle Scholar[39] Putinar M., “Positive Polynomials on Compact Semi-Algebraic Sets,” Indiana University Mathematics Journal, Vol. 42, No. 3, 1993, pp. 969–984. https://doi.org/10.1512/iumj.1993.42.42045 CrossrefGoogle Scholar[40] Gilbert E. G. and Tan K. T., “Linear Systems with State and Control Constraints: The Theory and Application of Maximal Output Admissible Sets,” IEEE Transactions on Automatic Control, Vol. 36, No. 9, 1991, pp. 1008–1020. https://doi.org/10.1109/9.83532 CrossrefGoogle Scholar[41] Elobaid M., Mattioni M., Monaco S. and Normand-Cyrot D., “Sampled-Data Tracking Under Model Predictive Control and Multi-Rate Planning,” IFAC-PapersOnLine, Vol. 53, No. 2, 2020, pp. 3620–3625. https://doi.org/10.1016/j.ifacol.2020.12.2043 Google Scholar[42] Prajna S., Papachristodoulou A. and Parrilo P. A., “Introducing SOSTOOLS: A General Purpose Sum of Squares Programming Solver,” Proceedings of the 41st IEEE Conference on Decision and Control, 2002, Vol. 1, Inst. of Electrical and Electronics Engineers, New York, 2002, pp. 741–746. https://doi.org/10.1109/CDC.2002.1184594 Google Scholar[43] Diehl M., Bock H. G., Schlöder J. P., Findeisen R., Nagy Z. and Allgöwer F., “Real-Time Optimization and Nonlinear Model Predictive Control of Processes Governed by Differential-Algebraic Equations,” Journal of Process Control, Vol. 12, No. 4, 2002, pp. 577–585. https://doi.org/10.1016/S0959-1524(01)00023-3 CrossrefGoogle Scholar[44] Houska B., Ferreau H. J. and Diehl M., “ACADO Toolkit—An Open-Source Framework for Automatic Control and Dynamic Optimization,” Optimal Control Applications and Methods, Vol. 32, No. 3, 2011, pp. 298–312. https://doi.org/10.1002/oca.939 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Volume 45, Number 7July 2022 CrossmarkInformationCopyright © 2022 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerospace SciencesAstrodynamicsAstronauticsAtmospheric RadiationAtmospheric ScienceControl SystemsControl TheoryFeedback ControlGuidance, Navigation, and Control SystemsNonlinear Control TheoryOptimal Control TheorySpace Orbit KeywordsModel Predictive ControlHalo OrbitEarthFeedback LinearizationLagrangian PointSatellitesNonlinear ProgrammingMATLABControl System DesignQuadratic ProgrammingAcknowledgmentsMohamed Elobaid wishes to thank Université Franco-Italienne/Università Italo-Francese (Vinci Grant 2019, Chapter II) for supporting his mobility between France and Italy during his Ph.D. The authors wish to thank the anonymous reviewers for their comments and suggestions, which notably helped them in improving this work.PDF Received19 July 2021Accepted16 February 2022Published online24 March 2022
Referência(s)