Artigo Revisado por pares

Simulation of Ionospheric Perturbations Induced by Rocket‐Propelled Vehicle: A Semi‐Empirical Approach

2022; Wiley; Volume: 127; Issue: 5 Linguagem: Inglês

10.1029/2021ja029993

ISSN

2169-9402

Autores

Pierre Ducourtieux,

Tópico(s)

GNSS positioning and interference

Resumo

Journal of Geophysical Research: Space PhysicsVolume 127, Issue 5 e2021JA029993 Research Article Simulation of Ionospheric Perturbations Induced by Rocket-Propelled Vehicle: A Semi-Empirical Approach Pierre Ducourtieux, Corresponding Author Pierre Ducourtieux [email protected] orcid.org/0000-0001-8348-946X opsci. technologies, Paris, France Correspondence to: P. Ducourtieux, [email protected]Search for more papers by this author Pierre Ducourtieux, Corresponding Author Pierre Ducourtieux [email protected] orcid.org/0000-0001-8348-946X opsci. technologies, Paris, France Correspondence to: P. Ducourtieux, [email protected]Search for more papers by this author First published: 11 April 2022 https://doi.org/10.1029/2021JA029993Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The flight of rocket-propelled vehicles triggers acoustic waves that propagate through the atmosphere and induce electron density changes at ionospheric heights. These perturbations can be observed using multi-frequency Global Navigation Satellite System (GNSS) receivers, sounding the ionosphere by taking advantage of its dispersive property. We extend an existing lightweight modeling approach to reproduce the shape, amplitude and timing of the observed perturbations using a semi-empirical source model based on flight conditions and engine characteristics to express the acoustic perturbations generated by the exhaust gases and a three-dimensional ray tracing method accounting for dissipative and dispersive effects to propagate the waveform through the atmosphere. Perturbations of the ionospheric plasma are estimated using a simplified model of collisions between neutral and charged particles. The developed simulation framework is applied to the launch of SpaceX's Crew Dragon spacecraft on May 30, 2020 from Kennedy Space Center. The amplitude, shape and timing of simulated perturbations are in good agreement with measurements made by GNSS ground-based receivers located in the region. This approach is a new step toward rapid characterization of anthropogenic activity in the atmosphere as well as natural events releasing energy near the Earth's surface (earthquake, volcanic activity, etc.) based on GNSS technology. Key Points The ascent flight of the Crew Dragon spacecraft induced perturbations of the ionospheric plasma observed using ground-based Global Navigation Satellite System (GNSS) receivers Perturbations caused by exhaust gases are simulated using linear acoustic propagation and simplified atmosphere-ionosphere coupling Proposed approach opens the possibility of characterization of rocket-propelled vehicles engines and trajectory based on GNSS soundings Plain Language Summary Perturbations of the ionosphere triggered by the ascent flight of a Falcon 9 rocket are simulated using a semi-empirical source model describing the disturbances caused by the energy released in the environment by the rocket engines. The results are successfully compared to measurements made by ground-based receivers sounding the ionosphere. This approach is a new step toward rapid characterization of anthropogenic activity in the atmosphere as well as natural events releasing energy near the Earth's surface (earthquake, volcanic activity, etc.). Open Research Data Availability Statement GNSS ephemerides and measurements from ground-based receivers were obtained from the Scripps Orbit and Permanent Array Center (SOPAC): RINEX files used in the study are available at http://garner.ucsd.edu (login: anonymous, password: email address). References Afraimovich, E. L., Kosogorov, E. A., & Plotnikov, A. V. (2002). Shock-acoustic waves generated during rocket launches and earthquakes. Cosmic Research, 40(3), 241–254. https://doi.org/10.1023/a:1015925020387 10.1023/a:1015925020387 ADSWeb of Science®Google Scholar Alden, H. L., & Habert, R. H. (1964). Gas dynamics of high-altitude rocket plumes. Mithras. 10.21236/AD0607940 Google Scholar Arendt, P. R. (1971). Ionospheric undulations following Apollo 14 launching. Nature, 231(5303), 438–439. https://doi.org/10.1038/231438a0 10.1038/231438a0 ADSWeb of Science®Google Scholar Arendt, P. R. (1972). Ionospheric shock front from Apollo 15 launching. Nature; Physical Science, 236(6), 8–10. https://doi.org/10.1038/physci236008a0 10.1038/physci236008a0 ADSWeb of Science®Google Scholar Bilitza, D. (2018). IRI the international standard for the ionosphere. Advances in Radio Science, 16, 1–11. https://doi.org/10.5194/ars-16-1-2018 10.5194/ars-16-1-2018 ADSWeb of Science®Google Scholar Booker, H. G. (1961). A local reduction of F-region ionization due to missile transit. Journal of Geophysical Research, 66(4), 1073–1079. https://doi.org/10.1029/JZ066i004p01073 10.1029/JZ066i004p01073 ADSWeb of Science®Google Scholar Bowling, T., Calais, E., & Haase, J. S. (2013). Detection and modelling of the ionospheric perturbation caused by a Space shuttle launch using a network of ground-based Global Positioning System stations. Geophysical Journal International, 192(3), 1324–1331. https://doi.org/10.1093/gji/ggs101 10.1093/gji/ggs101 ADSWeb of Science®Google Scholar Brügge, N. (2018). Evolution of the SpaceX merlin engine. Retrieved from http://www.b14643.de/Spacerockets_2/United_States_1/Falcon-9/Merlin/index.htm Google Scholar Calais, E., & Minster, J.-B. (1996). GPS detection of ionospheric perturbations following a space shuttle ascent. Geophysical Research Letters, 23(15), 1897–1900. https://doi.org/10.1029/96GL01256 10.1029/96GL01256 ADSWeb of Science®Google Scholar Candel, S. M. (1977). Numerical solution of conservation equations arising in linear wave theory - application to aeroacoustics. Journal of Fluid Mechanics, 83(3), 465–493. https://doi.org/10.1017/S0022112077001293 10.1017/S0022112077001293 ADSWeb of Science®Google Scholar Cotten, D. E., Donn, W. L., & Oppenheim, A. (1971). On the generation and propagation of shock waves from Apollo rockets at orbital altitudes. Geophysical Journal International, 26(1–4), 149–159. https://doi.org/10.1111/j.1365-246X.1971.tb03388.x 10.1111/j.1365-246X.1971.tb03388.x ADSWeb of Science®Google Scholar Dautermann, T., Calais, E., & Mattioli, G. S. (2009). Global Positioning System detection and energy estimation of the ionospheric wave caused by the 13 July 2003 explosion of the Soufrière Hills Volcano, Montserrat. Journal of Geophysical Research, 114(B2), B02202. https://doi.org/10.1029/2008JB005722 10.1029/2008JB005722 Web of Science®Google Scholar Ding, F., Wan, W., Mao, T., Wang, M., Ning, B., Zhao, B., & Xiong, B. (2014). Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft. Geophysical Research Letters, 41(10), 3351–3358. https://doi.org/10.1002/2014GL060107 10.1002/2014GL060107 ADSWeb of Science®Google Scholar Draper, J. S., Bien, F., Huffman, R. E., & Paulsen, D. E. (1975). Rocket plumes in the thermosphere. AIAA Journal, 13(6), 825–827. https://doi.org/10.2514/3.60445 10.2514/3.60445 ADSWeb of Science®Google Scholar Draper, J. S., & Moran, J. P. (1973). A study of wind tunnel simulation of high altitude rocket plumes. (Tech. Rep.). Aerodyne Research inc. 10.21236/AD0755840 Google Scholar Draper, J. S., & Sutton, E. A. (1973). A nomogram for high-altitude plume structures. Journal of Spacecraft and Rockets, 10(10), 682–684. https://doi.org/10.2514/3.61946 10.2514/3.61946 ADSWeb of Science®Google Scholar Drob, D. P., Emmert, J. T., Meriwether, J. W., Makela, J. J., Doornbos, E., Conde, M., et al. (2015). An update to the horizontal wind model (HWM): The quiet time thermosphere. Earth and Space Science, 2(7), 301–319. https://doi.org/10.1002/2014EA000089 10.1002/2014EA000089 ADSWeb of Science®Google Scholar Felker, J. K., & Roberts, W. T. (1966). Ionospheric rarefaction following rocket transit. Journal of Geophysical Research, 71(19), 4692–4694. https://doi.org/10.1029/JZ071i019p04692 10.1029/JZ071i019p04692 ADSWeb of Science®Google Scholar Furuya, T., & Heki, K. (2008). Ionospheric hole behind an ascending rocket observed with a dense GPS array. Earth Planets and Space, 60(3), 235–239. https://doi.org/10.1186/BF03352786 10.1186/BF03352786 CASADSWeb of Science®Google Scholar Gainville, O. (2008). Modélisation de la propagation atmosphérique des ondes infrasonores par une méthode de tracé de rayons non linéaire (PhD Thesis). Ecole Centrale de Lyon. Google Scholar Gainville, O., Piserchia, P. F., & Blanc-Benon, P. (2006). Ray tracing for long range atmospheric propagation of infrasound. In 12th AIAA/CEAS aeroacoustics conference (pp. 2006–2451). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2006-2451 10.2514/6.2006-2451 Google Scholar Golomb, D., Rosenberg, N., Wright, J., & Barnes, R. (1964). Formation of an electron depleted region in the ionosphere by chemical releases. In Proc. Intern. Space sci. Symp. ( 4th ed.). Air Force Cambridge Research Labs. Google Scholar Gordon, S., & McBride, B. J. (1994). Computer program for calculation of complex chemical equilibrium compositions and applications. NASA reference publication, p. 1311. Google Scholar Jackson, J. E., Whale, H. A., & Bauer, S. J. (1962). Local ionospheric disturbance created by a burning rocket. Journal of Geophysical Research, 67(5), 2059–2061. https://doi.org/10.1029/JZ067i005p02059 10.1029/JZ067i005p02059 ADSWeb of Science®Google Scholar Jarvinen, P. O., & Hill, J. A. F. (1970). Universal model for underexpanded rocket plumes in hypersonic flow. In 12th JANAF liquid propulsion meeting (p. 11). Google Scholar Jarvinen, P. O., Hill, J. A. F., Draper, J. S., & Good, R. E. (1966). High altitude rocket plumes. (Tech. Rep. No. MC 65-120-R3). Mithras, Inc. Google Scholar Kelley, M. C. (2009). The Earth’s ionosphere. Academic Press. Google Scholar Klobuchar, J. (1985). Ionospheric time delay effects on earth space propagation (pp. 1084–1088). Handbook of Geophysics and the Space Environment. Google Scholar Li, Y. Q., Jacobson, A. R., Carlos, R. C., Massey, R. S., Taranenko, Y. N., & Wu, G. (1994). The blast wave of the Shuttle plume at ionospheric heights. Geophysical Research Letters, 21(24), 2737–2740. https://doi.org/10.1029/94GL02548 10.1029/94GL02548 ADSWeb of Science®Google Scholar Lin, C. C. H., Chen, C.-H., Matsumura, M., Lin, J.-T., & Kakinami, Y. (2017). Observation and simulation of the ionosphere disturbance waves triggered by rocket exhausts. Journal of Geophysical Research: Space Physics, 122(8), 8868–8882. https://doi.org/10.1002/2017JA023951 10.1002/2017JA023951 ADSWeb of Science®Google Scholar MacLeod, M. A. (1966). Sporadic E theory. I. Collision-geomagnetic equilibrium. Journal of the Atmospheric Sciences, 23(1), 96–109. https://doi.org/10.1175/1520-0469(1966)023 2.0.CO;2 10.1175/1520-0469(1966)023 2.0.CO;2 ADSWeb of Science®Google Scholar Mannucci, A. J., Wilson, B. D., Yuan, D. N., Ho, C. H., Lindqwister, U. J., & Runge, T. F. (1998). A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Science, 33(3), 565–582. https://doi.org/10.1029/97RS02707 10.1029/97RS02707 ADSWeb of Science®Google Scholar Mendillo, M., Hawkins, G. S., & Klobuchar, J. A. (1975). A sudden vanishing of the ionospheric F region due to the launch of Skylab. Journal of Geophysical Research, 80(16), 2217–2228. https://doi.org/10.1029/JA080i016p02217 10.1029/JA080i016p02217 CASADSWeb of Science®Google Scholar Mikesell, T., Rolland, L., Lee, R., Zedek, F., Coïsson, P., & Dessa, J.-X. (2019). IonoSeis: A package to model coseismic ionospheric disturbances. Atmosphere, 10(8), 443–516. https://doi.org/10.3390/atmos10080443 10.3390/atmos10080443 ADSWeb of Science®Google Scholar Picone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. (2002). NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research, 107(A12), 1468. https://doi.org/10.1029/2002JA009430 10.1029/2002JA009430 CASADSWeb of Science®Google Scholar Pierce, A. D. (2019). Acoustics: An introduction to its physical principles and applications. Springer. 10.1007/978-3-030-11214-1 Google Scholar Ritzel, D. V., & Gottlieb, J. J. (1987). The overpressure signature from a supersonic projectile, UTIAS Report No. 279 Publisher: University of Toronto. Google Scholar Rogers, P. H., & Gardner, J. H. (1980). Propagation of sonic booms in the thermosphere. Journal of the Acoustical Society of America, 67(1), 78–91. https://doi.org/10.1121/1.383793 10.1121/1.383793 ADSWeb of Science®Google Scholar Rolland, L. M., Lognonné, P., & Munekane, H. (2011). Detection and modeling of Rayleigh wave induced patterns in the ionosphere. Journal of Geophysical Research, 116(A5), 395–418. https://doi.org/10.1029/2010JA016060 10.1029/2010JA016060 Web of Science®Google Scholar Rolland, L. M., Vergnolle, M., Nocquet, J.-M., Sladen, A., Dessa, J.-X., Tavakoli, F., & Cappa, F. (2013). Discriminating the tectonic and non-tectonic contributions in the ionospheric signature of the 2011, M w 7.1, dip-slip Van earthquake, Eastern Turkey. Geophysical Research Letters, 40(11), 2518–2522. https://doi.org/10.1002/grl.50544 10.1002/grl.50544 ADSWeb of Science®Google Scholar Schunk, R. W., & Nagy, A. F. (1980). Ionospheres of the terrestrial planets. Reviews of Geophysics and Space Physics, 18, 813–852. https://doi.org/10.1029/RG018i004p00813 10.1029/RG018i004p00813 CASADSWeb of Science®Google Scholar Scott, J. F., Blanc-Benon, P., & Gainville, O. (2017). Weakly nonlinear propagation of small-wavelength, impulsive acoustic waves in a general atmosphere. Wave Motion, 72, 41–61. 10.1016/j.wavemoti.2016.12.005 Web of Science®Google Scholar Shinagawa, H., Iyemori, T., Saito, S., & Maruyama, T. (2007). A numerical simulation of ionospheric and atmospheric variations associated with the Sumatra earthquake on December 26, 2004. Earth Planets and Space, 59(9), 1015–1026. https://doi.org/10.1016/j.wavemoti.2016.12.005 10.1016/j.wavemoti.2016.12.005 ADSWeb of Science®Google Scholar SpaceX (2015). Falcon 9 launch vehicle, payload user’s guide, rev 2. Space Exploration Technologies Corp. Google Scholar Sutherland, L. C., & Bass, H. E. (2004). Atmospheric absorption in the atmosphere up to 160 km. Journal of the Acoustical Society of America, 115(3), 1012–1032. https://doi.org/10.1121/1.1631937 10.1121/1.1631937 CASADSWeb of Science®Google Scholar Sutton, G. P., & Biblarz, O. (2016). Rocket propulsion elements. John Wiley & Sons. Google Scholar Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., & Zvereva, T. (2015). International geomagnetic reference field: The 12th generation. Earth Planets and Space, 67(1), 68–19. https://doi.org/10.1186/s40623-015-0228-9 10.1186/s40623-015-0228-9 Web of Science®Google Scholar Themens, D. (2021). The empirical-Canadian high arctic ionospheric model. Google Scholar Thomas, D., Bagiya, M. S., Sunil, P. S., Rolland, L., Sunil, A. S., Mikesell, T. D., & Ramesh, D. S. (2018). Revelation of early detection of co-seismic ionospheric perturbations in GPS-TEC from realistic modelling approach: Case study. Scientific Reports, 8(1), 1–10. PubMedWeb of Science®Google Scholar Vadas, S. L., & Crowley, G. (2017). Neutral wind and density perturbations in the thermosphere created by gravity waves observed by the TIDDBIT sounder. Journal of Geophysical Research: Space Physics, 122(6), 6652–6678. https://doi.org/10.1038/s41598-018-30476-9 10.1038/s41598-018-30476-9 ADSWeb of Science®Google Scholar Whitham, G. B. (1956). On the propagation of weak shock waves. Journal of Fluid Mechanics, 1(3), 290–318. https://doi.org/10.1017/S0022112056000172 10.1017/S0022112056000172 ADSWeb of Science®Google Scholar Zasov, G. F., Karlov, V. D., Romanchuk, T. E., Solodovnikov, G. K., Tkachev, G. N., & Trukhan, M. G. (1977). Observations of disturbances in the lower ionosphere during Soyuz-Apollo experiments. Geomagnetism and Aeronomy, 17, 346–348. ADSGoogle Scholar Volume127, Issue5May 2022e2021JA029993 ReferencesRelatedInformation

Referência(s)