Pseudomonas : versatile biocatalysts for PFAS
2022; Wiley; Volume: 24; Issue: 7 Linguagem: Catalão
10.1111/1462-2920.15990
ISSN1462-2920
Autores Tópico(s)Porphyrin Metabolism and Disorders
ResumoEnvironmental MicrobiologyVolume 24, Issue 7 p. 2882-2889 Opinion Pseudomonas: versatile biocatalysts for PFAS Lawrence P. Wackett, Corresponding Author Lawrence P. Wackett [email protected] orcid.org/0000-0002-3255-1101 Microbial Engineering Program, University of Minnesota, Minneapolis, MN, USA Biotechnology Institute, University of Minnesota, Minneapolis, MN, USA Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA For correspondence. E-mail [email protected]; Tel. 612-625-3785.Search for more papers by this author Lawrence P. Wackett, Corresponding Author Lawrence P. Wackett [email protected] orcid.org/0000-0002-3255-1101 Microbial Engineering Program, University of Minnesota, Minneapolis, MN, USA Biotechnology Institute, University of Minnesota, Minneapolis, MN, USA Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA For correspondence. E-mail [email protected]; Tel. 612-625-3785.Search for more papers by this author First published: 05 April 2022 https://doi.org/10.1111/1462-2920.15990Citations: 6Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Akkaya, Ö., Pérez-Pantoja, D.R., Calles, B., Nikel, p.I., and de Lorenzo, V. (2018) The metabolic redox regime of Pseudomonas putida tunes its evolvability toward novel xenobiotic substrates. MBio 9: e01512-18. 10.1128/mBio.01512-18 PubMedWeb of Science®Google Scholar Au, K.G., and Walsh, C.T. (1984) Stereochemical studies on a plasmid-coded fluoroacetate halidohydrolase. Bioorg. Chem 12: 197–205. https://doi.org/10.1016/0045-2068(84)90003-8 10.1016/0045-2068(84)90003-8 CASWeb of Science®Google Scholar Baker, J.L., Sudarsan, N., Weinberg, Z., Roth, A., Stockbridge, R.B., and Breaker, R.R. (2012) Widespread genetic switches and toxicity resistance proteins for fluoride. Science 335: 233–235. 10.1126/science.1215063 CASPubMedWeb of Science®Google Scholar Barbier, O., Arreola-Mendoza, L., and Del Razo, L.M. (2010) Molecular mechanisms of fluoride toxicity. Chem-Bio Interact 188: 319–333. 10.1016/j.cbi.2010.07.011 CASPubMedWeb of Science®Google Scholar Brackmann, R., and Fuchs, G. (1993) Enzymes of anaerobic metabolism of phenolic compounds: 4-Hydroxybenzoyl-CoA reductase (dehydroxylating) from a denitrifying Pseudomonas species. Eur J Biochem 213: 563–571. 10.1111/j.1432-1033.1993.tb17795.x CASPubMedWeb of Science®Google Scholar Breaker, R.R. (2012) New insight on the response of bacteria to fluoride. Caries Res 46: 78–81. 10.1159/000336397 CASPubMedWeb of Science®Google Scholar Butt, C.M., Muir, D.C., and Mabury, S.A. (2014) Biotransformation pathways of fluorotelomer-based polyfluoroalkyl substances: a review. Environ Toxicol Chem 33: 243–267. 10.1002/etc.2407 CASPubMedWeb of Science®Google Scholar Bygd, M.D., Aukema, K.G., Richman, J.E., and Wackett, L.P. (2021) Unexpected mechanism of 2,2-difluoro-1,3-benzodioxole defluorination by Pseudomonas putida F1. MBio 12: e3001-21. https://doi.org/10.1128/mBio.03001-21. 10.1128/mBio.03001-21 Web of Science®Google Scholar Bygd, M.D., Aukema, K.G., Richman, J.E., and Wackett, L.P. (2022) Microwell fluoride screen for chemical, enzymatic and cellular reactions reveals latent microbial defluorination capacity for –CF3 groups. Appl Environ Microbiol (in press). 10.1128/aem.00288-22 PubMedWeb of Science®Google Scholar Calero, P., Volke, D.C., Lowe, p.T., Gotfredsen, C.H., O'Hagan, D., and Nikel, p.I. (2020) A fluoride-responsive genetic circuit enables in vivo biofluorination in engineered Pseudomonas putida. Nat Commun 11: 1–11. 10.1038/s41467-020-18813-x PubMedWeb of Science®Google Scholar Castro, C.E., and Belser, N.O. (1990) Biodehalogenation: oxidative and reductive metabolism of 1, 1, 2-trichloroethane by Pseudomonas putida—biogeneration of vinyl chloride. Environ Toxicol Chem 9: 707–714. https://doi.org/10.1897/1552-8618(1990)9[707:boarmo]2.0.co;2 10.1002/etc.5620090603 CASWeb of Science®Google Scholar Chan, p.W., Chakrabarti, N., Ing, C., Halgas, O., To, T.K., Wälti, M., et al. (2022) Defluorination capability of l-2-haloacid dehalogenases in the HAD-like hydrolase superfamily correlates with active site compactness. ChemBioChem 23: e202100414. 10.1002/cbic.202100414 CASPubMedWeb of Science®Google Scholar Chan, p.W., Yakunin, A.F., Edwards, E.A., and Pai, E.F. (2011) Mapping the reaction coordinates of enzymatic defluorination. J Am Chem Soc 133: 7461–7468. 10.1021/ja200277d CASPubMedWeb of Science®Google Scholar Craig, K., Johnson, B.R., and Grunden, A. (2021) Leveraging Pseudomonas stress response mechanisms for industrial applications. Front Microbiol 12: 1082. 10.3389/fmicb.2021.660134 Web of Science®Google Scholar Crespo, A., Blanco-Cabra, N., and Torrents, E. (2018) Aerobic vitamin B12 biosynthesis is essential for Pseudomonas aeruginosa class II ribonucleotide reductase activity during planktonic and biofilm growth. Front Microbiol 9: 986. 10.3389/fmicb.2018.00986 PubMedWeb of Science®Google Scholar Cros, A., Alfaro-Espinoza, G., De Maria, A., Wirth, N.T., and Nikel, p.I. (2022) Synthetic metabolism for biohalogenation. Curr Opin Biotechnol 74: 180–193. 10.1016/j.copbio.2021.11.009 CASPubMedWeb of Science®Google Scholar den Dooren de Jong, L.E. (1926) Bijdrage tot de kennis van het mineralisatieproces. Rotterdam: Nijgh and Van Ditmar. Google Scholar Duque, E., Haidour, A., Godoy, F., and Ramos, J.L. (1993) Construction of a Pseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene. J Bacteriol 175: 2278–2283. 10.1128/jb.175.8.2278-2283.1993 CASPubMedWeb of Science®Google Scholar Ellis, L.B.M., Hershberger, C.D., and Wackett, L.P. (2000) The University of Minnesota biocatalysis/biodegradation database: microorganisms, genomics, and prediction. Nucl Acids Res 28: 377–379. https://doi.org/10.1093/nar/28.1.377 10.1093/nar/28.1.377 CASPubMedWeb of Science®Google Scholar Engesser, K.H., Cain, R.B., and Knackmuss, H.J. (1988a) Bacterial metabolism of side chain fluorinated aromatics: cometabolism of 3-trifluoromethyl (TFM)-benzoate by Pseudomonas putida (arvilla) mt-2 and Rhodococcus rubropertinctus N657. Arch Microbiol 149: 188–197. 10.1007/BF00422004 CASPubMedWeb of Science®Google Scholar Engesser, K.H., Rubio, M.A., and Ribbons, D.W. (1988b) Bacterial metabolism of side chain fluorinated aromatics: cometabolism of 4-trifluoromethyl (TFM)-benzoate by 4-isopropylbenzoate grown Pseudomonas putida JT strains. Arch Microbiol 149: 198–206. 10.1007/BF00422005 CASPubMedWeb of Science®Google Scholar Engesser, K.H., Schmidt, E., and Knackmuss, H.J. (1980) Adaptation of Alcaligenes eutrophus B9 and Pseudomonas sp. B13 to 2-fluorobenzoate as growth substrate. Appl Environ Microbiol 39: 68–73. 10.1128/aem.39.1.68-73.1980 CASPubMedWeb of Science®Google Scholar Filho, A.H.D.S., and de Souza, G.L.C. (2020) Examining the degradation of environmentally daunting per- and poly-fluoroalkyl substances from a fundamental chemical perspective. Phys Chem Chem Phys 22: 17659–17667. 10.1039/D0CP02445G CASPubMedWeb of Science®Google Scholar Fincker, M., and Spormann, A.M. (2017) Biochemistry of catabolic reductive dehalogenation. Annu Rev Biochem 86: 357–386. 10.1146/annurev-biochem-061516-044829 CASPubMedWeb of Science®Google Scholar Goldman, P. (1965) The enzymatic cleavage of the carbon-fluorine bond in fluoroacetate. J Biol Chem 240: 3434–3438. 10.1016/S0021-9258(18)97236-4 CASPubMedWeb of Science®Google Scholar Goldman, P., Milne, G.W.A., and Pignataro, M.T. (1967) Fluorine containing metabolites formed from 2-fluorobenzoic acid by Pseudomonas species. Arch Biochem Biophys 118: 178–184. 10.1016/0003-9861(67)90295-0 CASWeb of Science®Google Scholar Gong, T., Liu, R., Zuo, Z., Che, Y., Yu, H., Song, C., and Yang, C. (2016) Metabolic engineering of Pseudomonas putida KT2440 for complete mineralization of methyl parathion and γ-hexachlorocyclohexane. ACS Synth Biol 5: 434–442. https://doi.org/10.1021/acssynbio.6b00025 10.1021/acssynbio.6b00025 CASPubMedWeb of Science®Google Scholar Gribble, G.W. (2015) Biological activity of recently discovered halogenated marine natural products. Mar Drugs 13: 4044–4136. 10.3390/md13074044 CASPubMedWeb of Science®Google Scholar Guo, Y., Rene, E.R., Han, B., and Ma, W. (2021) Enhanced fluoroglucocorticoid removal from groundwater in a bio-electrochemical system with polyaniline-loaded activated carbon three-dimensional electrodes: performance and mechanisms. J Hazard Mater 416: 126197. 10.1016/j.jhazmat.2021.126197 CASPubMedWeb of Science®Google Scholar Han, J., Kiss, L., Mei, H., Remete, A.M., Ponikvar-Svet, M., Sedgwick, D.M., et al. (2021) Chemical aspects of human and environmental overload with fluorine. Chem Rev 121: 4678–4742. 10.1021/acs.chemrev.0c01263 CASPubMedWeb of Science®Google Scholar Haro, M.A., and de Lorenzo, V. (2001) Metabolic engineering of bacteria for environmental applications: construction of Pseudomonas strains for biodegradation of 2-chlorotoluene. J Biotechnol 85: 103–113. 10.1016/S0168-1656(00)00367-9 CASPubMedWeb of Science®Google Scholar Harper, D.B., and Blakley, E.R. (1971) The metabolism of p-fluorophenylacetic acid by a Pseudomonas sp. I. Isolation and identification of intermediates in degradation. Canadian J Microbiol 17: 635–644. 10.1139/m71-103 CASPubMedWeb of Science®Google Scholar Härtel, U., Eckel, E., Koch, J., Fuchs, G., Linder, D., and Buckel, W. (1993) Purification of glutaryl-CoA dehydrogenase from Pseudomonas sp., an enzyme involved in the anaerobic degradation of benzoate. Arch Microbiol 159: 174–181. 10.1007/BF00250279 CASPubMedWeb of Science®Google Scholar Hefferman, B., Murphy, C.D., Syron, E., and Casey, E. (2009) Treatment of fluoroacetate by a Pseudomonas fluorescens biofilm growth in membrane aerated biofilm reactor. Environ Sci Technol 43: 6776–6785. 10.1021/es9001554 PubMedWeb of Science®Google Scholar Horesh, G., Blackwell, G.A., Tonkin-Hill, G., Corander, J., Heinz, E., and Thomson, N.R. (2021) A comprehensive and high-quality collection of Escherichia coli genomes and their genes. Microb Genom 7: 000499. CASWeb of Science®Google Scholar Huang, S., and Jaffé, p.R. (2019) Defluorination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by Acidimicrobium sp. strain A6. Environ Sci Technol 53: 11410–11419. 10.1021/acs.est.9b04047 CASPubMedWeb of Science®Google Scholar Hur, H.-G., Sadowsky, M.J., and Wackett, L.P. (1994) Metabolism of chlorofluorocarbons and polybrominated compounds by Pseudomonas putida G786 (pHG-2) via an engineered metabolic pathway. Appl Environ Microbiol 60: 4148–4154. 10.1128/aem.60.11.4148-4154.1994 CASPubMedWeb of Science®Google Scholar Ivanova, A.A., Mullaeva, S.A., Sazonova, O.I., Petrikov, K.V., and Vetrova, A.A. (2022) Current research on simultaneous oxidation of aliphatic and aromatic hydrocarbons by bacteria of genus Pseudomonas. Folia Microbiol: 1–14. https://doi.org/10.1007/s12223-022-00966-5 10.1007/s12223-022-00966-5 PubMedWeb of Science®Google Scholar Ji, C., Stockbridge, R.B., and Miller, C. (2014) Bacterial fluoride resistance, Fluc channels, and the weak acid accumulation effect. J Gen Physiol 144: 257–261. 10.1085/jgp.201411243 CASPubMedWeb of Science®Google Scholar Jordan, A., Torrents, E., Sala, I., Hellman, U., Gibert, I., and Reichard, P. (1999) Ribonucleotide reduction in Pseudomonas species: simultaneous presence of active enzymes from different classes. J Bacteriol 181: 3974–3980. 10.1128/JB.181.13.3974-3980.1999 CASPubMedWeb of Science®Google Scholar Junker, F., and Ramos, J.L. (1999) Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-T1E. J Bacteriol 181: 5693–5700. 10.1128/JB.181.18.5693-5700.1999 CASPubMedWeb of Science®Google Scholar Kalita, p.J., and Ram, R.M. (2019) Industrial applications of Pseudomonas fluorescens: a patent survey. In Intellectual Property Issues in Microbiology. Singapore: Springer, pp. 383–402. 10.1007/978-981-13-7466-1_21 Google Scholar Kawasaki, H., Miyoshi, K., and Tonomura, K. (1981) Purification, crystallization and properties of haloacetate halidohydrolase from Pseudomonas species. Agric Biol Chem 45: 543–544. 10.1271/bbb1961.45.543 CASWeb of Science®Google Scholar Key, B.D., Howell, R.D., and Criddle, C.S. (1997) Fluorinated organics in the biosphere. Environ Sci Technol 31: 2445–2454. 10.1021/es961007c CASWeb of Science®Google Scholar Kim, M.H., Wang, N., and Chu, K.-H. (2014) 6: 2 Fluorotelomer alcohol (6: 2 FTOH) biodegradation by multiple microbial species under different physiological conditions. Appl Microbiol Biotech 98: 1831–1840. 10.1007/s00253-013-5131-3 CASPubMedWeb of Science®Google Scholar Kim, M.H., Wang, N., McDonald, T., and Chu, K.-H. (2012) Biodefluorination and biotransformation of fluorotelomer alcohols by two alkane-degrading Pseudomonas strains. Biotechnol Bioeng 109: 3041–3048. 10.1002/bit.24561 CASPubMedWeb of Science®Google Scholar Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., et al. (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49: D1388–D1395. 10.1093/nar/gkaa971 CASPubMedWeb of Science®Google Scholar Lanz, N.D., and Booker, S.J. (2012) Identification and function of auxiliary iron–sulfur clusters in radical SAM enzymes. Biochim Biophys Acta 1824: 1196–1212. 10.1016/j.bbapap.2012.07.009 CASPubMedWeb of Science®Google Scholar Lee, C.H., Lewis, T.A., Paszczynski, A., and Crawford, R.L. (1999) Identification of an extracellular catalyst of carbon tetrachloride dehalogenation from Pseudomonas stutzeri strain KC as pyridine-2, 6-bis (thiocarboxylate). Biochem Biophys Res Commun 261: 562–566. 10.1006/bbrc.1999.1077 CASPubMedWeb of Science®Google Scholar Lehrbach, p.R., Zeyer, J., Reineke, W., Knackmuss, H.-J., and Timmis, K.N. (1984) Enzyme recruitment in vitro: use of cloned genes to extend the range of haloaromatics degraded by Pseudomonas sp. strain B13. J Bacteriol 158: 1025–1032. 10.1128/jb.158.3.1025-1032.1984 CASPubMedWeb of Science®Google Scholar Leung, K.T., Cassidy, M.B., Shaw, K.W., Lee, H., Trevors, J.T., Lohmeier-Vogel, E.M., and Vogel, H.J. (1997) Pentachlorophenol biodegradation by Pseudomonas spp. UG25 and UG30. World J Microbiol Biotechnol 13: 305–313. 10.1023/A:1018587108422 CASWeb of Science®Google Scholar Li, S., and Wackett, L.P. (1993) Reductive dehalogenation by cytochrome P450CAM: substrate binding and catalysis. Biochemistry 32: 9355–9361. 10.1021/bi00087a014 CASPubMedWeb of Science®Google Scholar Lim, X. (2021) Can microbes save us from PFAS? Chem Eng News 22: 30–34. Google Scholar Liu, J., Lee, L.S., Nies, L.F., Nakatsu, C.H., and Turco, R.F. (2007) Biotransformation of 8: 2 fluorotelomer alcohol in soil and by soil bacteria isolates. Environ Sci Technol 41: 8024–8030. 10.1021/es0708722 CASPubMedWeb of Science®Google Scholar Logan, M.S., Newman, L.M., Schanke, C.A., and Wacket, L.P. (1993) Cosubstrate effects in reductive dehalogenation by Pseudomonas putida G786 expressing cytochrome P-450CAM. Biodegradation 4: 39–50. 10.1007/BF00701453 CASPubMedGoogle Scholar Maeda, T., Okamura, D., Yokoo, M., Yamashita, E., and Ogawa, H.I. (2007) Fluorine elimination from 4-fluorobenzyl alcohol by Pseudomonas spp. J Environ Biotechnol 7: 45–53. PubMedWeb of Science®Google Scholar Martinez, B., Tomkins, J., Wackett, L.P., Wing, R., and Sadowsky, M.J. (2001) Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 183: 5684–5697. 10.1128/JB.183.19.5684-5697.2001 CASPubMedWeb of Science®Google Scholar McIlwain, B.C., Ruprecht, M.T., and Stockbridge, R.B. (2021) Membrane exporters of fluoride ion. Annu Rev Biochem 90: 559–579. 10.1146/annurev-biochem-071520-112507 CASPubMedWeb of Science®Google Scholar Meyer, J.J., Grobbelaar, N., and Steyn, p.L. (1990) Fluoroacetate-metabolizing pseudomonad isolated from Dichapetalum cymosum. Appl Environ Microbiol 56: 2152–2155. 10.1128/aem.56.7.2152-2155.1990 CASPubMedWeb of Science®Google Scholar Misiak, K., Casey, E., and Murphy, C.D. (2011) Factors influencing 4-fluorobenzoate degradation in biofilm cultures of Pseudomonas knackmussii B13. Water Res 45: 3512–3520. 10.1016/j.watres.2011.04.020 CASPubMedWeb of Science®Google Scholar Möbitz, H., and Boll, M. (2002) A Birch-like mechanism in enzymatic benzoyl-CoA reduction: a kinetic study of substrate analogues combined with an ab initio model. Biochemistry 41: 1752–1758. 10.1021/bi0113770 CASPubMedWeb of Science®Google Scholar Molina, L., Segura, A., Duque, E., and Ramos, J.L. (2020) The versatility of Pseudomonas putida in the rhizosphere environment. In Advances in Applied Microbiology, Vol. 110. Cambridge, Massachusetts: Academic Press, pp. 149–180. Google Scholar Murphy, C.D. (2021) Engineering microorganisms to generate fluorinated platform chemicals. Chem Catalysis 1: 1150–1152. 10.1016/j.checat.2021.10.017 Google Scholar Murphy, C.D., Schaffrath, C., and O'Hagan, D. (2003) Fluorinated natural products: the biosynthesis of fluoroacetate and 4-fluorothreonine in Streptomyces cattleya. Chemosphere 52: 455–461. 10.1016/S0045-6535(03)00191-7 CASPubMedWeb of Science®Google Scholar Nikel, p.I., and de Lorenzo, V. (2013) Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1, 3-dichloroprop-1-ene. Metabolic Eng 15: 98–112. 10.1016/j.ymben.2012.09.006 CASPubMedWeb of Science®Google Scholar Nikel, p.I., and de Lorenzo, V. (2018) Pseudomonas putida as a functional chassis for industrial biocatalysis: from native biochemistry to trans-metabolism. Metabol Eng 50: 142–155. 10.1016/j.ymben.2018.05.005 CASPubMedWeb of Science®Google Scholar Nikel, p.I., and de Lorenzo, V. (2021) Metabolic engineering for large-scale environmental bioremediation. In Metabolic Engineering: Concepts and Applications, Vol. 13, pp. 859–890. Hoboken, New Jersey: Wiley VCH. 10.1002/9783527823468.ch22 Google Scholar O'Hagan, D. (2021) Organo-fluorine chemistry V. Beilstein J Org Chem 17: 737–738. 10.3762/bjoc.17.63 PubMedWeb of Science®Google Scholar Ogawa, Y., Tokunaga, E., Kobayashi, O., Hirai, K., and Shibata, N. (2021) Current contributions of organofluorine compounds to the agrochemical industry. Iscience 23: 101467. 10.1016/j.isci.2020.101467 Web of Science®Google Scholar Presentato, A., Lampis, S., Vantini, A., Manea, F., Daprà, F., Zuccoli, S., and Vallini, G. (2020) On the ability of perfluorohexane sulfonate (PFHxS) bioaccumulation by two Pseudomonas sp. strains isolated from PFAS-contaminated environmental matrices. Microorganisms 8: 92. 10.3390/microorganisms8010092 CASWeb of Science®Google Scholar Raddadi, N., Crotti, E., Rolli, E., Marasco, R., Fava, F., and Daffonchio, D. (2012) The most important Bacillus species in biotechnology. In Bacillus Thuringiensis Biotechnology. Dordrecht: Springer, pp. 329–345. 10.1007/978-94-007-3021-2_17 Google Scholar Ramos, J.L., Díaz, E., Dowling, D., de Lorenzo, V., Molin, S., O'Gara, F., et al. (1994) The behavior of bacteria designed for biodegradation. Bio/Technology 12: 1349–1356. 10.1038/nbt1294-1349 CASPubMedWeb of Science®Google Scholar Ramos, J.L., Sol Cuenca, M., Molina-Santiago, C., Segura, A., Duque, E., Gómez-García, M.R., et al. (2015) Mechanisms of solvent resistance mediated by interplay of cellular factors in Pseudomonas putida. FEMS Microbiol Rev 39: 555–566. 10.1093/femsre/fuv006 PubMedWeb of Science®Google Scholar Reineke, W., and Knackmuss, H.-J. (1979) Construction of haloaromatic-utilizing bacteria. Nature 277: 385–386. 10.1038/277385a0 CASPubMedWeb of Science®Google Scholar Renganathan, V. (1989) Possible involvement of toluene-2, 3-dioxygenase in defluorination of 3-fluoro-substituted benzenes by toluene-degrading Pseudomonas sp. strain T-12. Appl Environ Microbiol 55: 330–334. 10.1128/aem.55.2.330-334.1989 CASPubMedWeb of Science®Google Scholar Retallack, D.M., Jin, H., and Chew, L. (2012) Reliable protein production in a Pseudomonas fluorescens expression system. Protein Exp Purif 81: 157–165. 10.1016/j.pep.2011.09.010 CASPubMedWeb of Science®Google Scholar Rhodes, H. (1571) The Boke of Nurture, or Schoole of Good Maners, RareBooksClub.com. Google Scholar Samin, G., Pavlova, M., Arif, M.I., Postema, C.P., Damborsky, J., and Janssen, D.B. (2014) A Pseudomonas putida strain genetically engineered for 1, 2, 3-trichloropropane bioremediation. Appl Environ Microbiol 80: 5467–5476. 10.1128/AEM.01620-14 PubMedWeb of Science®Google Scholar Sánchez-Hevia, D.L., Yuste, L., Moreno, R., and Rojo, F. (2018) Influence of the Hfq and Crc global regulators on the control of iron homeostasis in Pseudomonas putida. Environ Microbiol 20: 3484–3503. 10.1111/1462-2920.14263 CASPubMedWeb of Science®Google Scholar Schreiber, A., Hellwig, M., Dorn, E., Reineke, W., and Knackmuss, H.J. (1980) Critical reactions in fluorobenzoic acid degradation by Pseudomonas sp. B13. Appl Environ Microbiol 39: 58–67. 10.1128/aem.39.1.58-67.1980 CASPubMedWeb of Science®Google Scholar Shi, G., Yin, H., Ye, J., Peng, H., Li, J., and Luo, C. (2013) Aerobic biotransformation of decabromodiphenyl ether (PBDE-209) by Pseudomonas aeruginosa. Chemosphere 93: 1487–1493. 10.1016/j.chemosphere.2013.07.044 CASPubMedWeb of Science®Google Scholar Shintani, M., Takahashi, Y., Yamane, H., and Nojiri, H. (2010) The behavior and significance of degradative plasmids belonging to Inc groups in pseudomonas within natural environments and microcosms. Microbes Environ 25: 253–265. 10.1264/jsme2.ME10155 PubMedWeb of Science®Google Scholar Silver, S. (2020) Patenting a living microbial cell: 40th anniversary of US Supreme Court decision Diamond versus Chakrabarty. FEMS Microbiol Lett 367: fnaa091. 10.1093/femsle/fnaa091 CASPubMedWeb of Science®Google Scholar Smart, B.E. (2001) Fluorine substituent effects (on bioactivity). J Fluorine Chem 109: 3–11. 10.1016/S0022-1139(01)00375-X CASWeb of Science®Google Scholar Stanier, R.Y., Palleroni, N.J., and Duodoroff, M. (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43: 159–271. 10.1099/00221287-43-2-159 CASPubMedWeb of Science®Google Scholar Travkin, V.V., Solyanikova, I.I., Rietjens, I.I., Vervoort, J.J., van Berkel, W.W., and Golovleva, L.L. (2003) Degradation of 3, 4-dichloro-and 3, 4-difluoroaniline by Pseudomonas fluorescens 26-K. J Environ Sci Health, Part B 38: 121–132. 10.1081/PFC-120018443 CASPubMedWeb of Science®Google Scholar Tucker, W.B., and Mecozzi, S. (2013) Base-induced instability of fluorotelomer alcohols. J Fluorine Chem 156: 26–29. 10.1016/j.jfluchem.2013.08.010 CASWeb of Science®Google Scholar van Bergeijk, D.A., Terlouw, B.R., Medema, M.H., and van Wezel, G.P. (2020) Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nat Rev Microbiol 18: 546–558. 10.1038/s41579-020-0379-y PubMedWeb of Science®Google Scholar Wackett, L.P. (2021) Why is the biodegradation of polyfluorinated compounds so rare? mSphere 6: e0072121. https://doi.org/10.1128/mSphere.00721-21. 10.1128/mSphere.00721-21 PubMedWeb of Science®Google Scholar Wackett, L.P. (2022) Nothing lasts foreover: understanding microbial biodegradation of polyfluorinated compounds, including PFAS. Micro Biotech 15: 773–792. https://doi.org/10.1111/1751-7915.13928. 10.1111/1751-7915.13928 CASPubMedWeb of Science®Google Scholar Wicker, J., Lorsbach, T., Gütlein, M., Schmid, E., Latino, D., Kramer, S., and Fenner, K. (2016) enviPath–the environmental contaminant biotransformation pathway resource. Nucleic Acids Res 44: D502–D508. 10.1093/nar/gkv1229 CASPubMedWeb of Science®Google Scholar Williams, p.A., Jones, R.M., and Zylstra, G. (2004) Genomics of catabolic plasmids. In Pseudomonas, J.L. Ramos (ed). Boston, MA: Springer, pp. 165–195. 10.1007/978-1-4419-9086-0_6 Google Scholar Winsor, G.L., Griffiths, E.J., Lo, R., Dhillon, B.K., Shay, J.A., and Brinkman, F.S. (2016) Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 44: D646–D665. 10.1093/nar/gkv1227 CASPubMedWeb of Science®Google Scholar Wirth, N.T., and Nikel, p.I. (2021) Combinatorial pathway balancing provides biosynthetic access to 2-fluoro-cis, cis-muconate in engineered Pseudomonas putida. Chem Catal 1: 1234–1259. 10.1016/j.checat.2021.09.002 CASPubMedGoogle Scholar Wiseman, A. (1970) Effect of inorganic fluoride on enzymes. In Pharmacology of Fluorides. Berlin, Heidelberg: Springer, pp. 48–97. 10.1007/978-3-642-99973-4_2 Google Scholar Wu, L., Sun, Q., Desmeth, P., Sugawara, H., Xu, Z., McCluskey, K., et al. (2017) World data Centre for microorganisms: an information infrastructure to explore and utilize preserved microbial strains worldwide. Nucl Acids Res 45: D611–D618. 10.1093/nar/gkw903 CASPubMedWeb of Science®Google Scholar Xie, Y., Chen, G., May, A.L., Yan, J., Brown, L.P., Powers, J.B., et al. (2020) Pseudomonas sp. strain 273 degrades fluorinated alkanes. Environ Sci Technol 54: 14994–15003. 10.1021/acs.est.0c04029 CASPubMedWeb of Science®Google Scholar Yu, D., Banting, G., and Neumann, N.F. (2021) A review of the taxonomy, genetics, and biology of the genus Escherichia and the type species Escherichia coli. Canadian J Microbiol 67: 553–571. 10.1139/cjm-2020-0508 CASPubMedWeb of Science®Google Scholar Yu, Y., Zhang, K., Li, Z., Ren, C., Chen, J., Lin, Y.H., et al. (2020) Microbial cleavage of C-F bonds in two C6 per- and polyfluorinated compounds via reductive defluorination. Environ Sci Technol 54: 14393–14402. 10.1021/acs.est.0c04483 CASPubMedWeb of Science®Google Scholar Zhan, Y., Yan, Y., Deng, Z., Chen, M., Lu, W., Lu, C., et al. (2016) The novel regulatory ncRNA, NfiS, optimizes nitrogen fixation via base pairing with the nitrogenase gene nifK mRNA in Pseudomonas stutzeri A1501. Proc Natl Acad Sci U S A 113: E4348–E4356. 10.1073/pnas.1604514113 CASPubMedWeb of Science®Google Scholar Zhang, Q., Dong, X., Lu, J., Song, J., and Wang, Y. (2021) Chemoproteomic approach toward probing the interactomes of perfluoroalkyl substances. Anal Chem 93: 9634–9639. 10.1021/acs.analchem.1c01948 PubMedWeb of Science®Google Scholar Zhang, X., Gao, X., Li, C., Luo, X., and Wang, Y. (2019) Fluoride contributes to the shaping of microbial community in high fluoride groundwater in Qiji County, Yuncheng City, China. Sci Rep 9: 1–10. 10.1038/s41598-018-37186-2 PubMedWeb of Science®Google Scholar Zhao, Y., Che, Y., Zhang, F., Wang, J., Gao, W., Zhang, T., and Yang, C. (2021) Development of an efficient pathway construction strategy for rapid evolution of the biodegradation capacity of Pseudomonas putida KT2440 and its application in bioremediation. Sci Total Environ 761: 143239. 10.1016/j.scitotenv.2020.143239 CASPubMedWeb of Science®Google Scholar Citing Literature Volume24, Issue7July 2022Pages 2882-2889 ReferencesRelatedInformation
Referência(s)