Artigo Acesso aberto Revisado por pares

Mild Hybridization of Turboprop Engine With High-Power-Density Integrated Electric Drives

2022; Institute of Electrical and Electronics Engineers; Volume: 8; Issue: 4 Linguagem: Inglês

10.1109/tte.2022.3160153

ISSN

2577-4212

Autores

Yuzheng Chen, Tao Yang, Muhammad Raza Khowja, Antonino La Rocca, Usman Nasir, Shajjad Chowdhury, D. R. Evans, Dafydd Kember, Thomas Klonowski, Yohan Arnaud, Lucie Apostin, Thierry Liger, Gregory Cossart, Gaurang Vakil, Chris Gerada, Serhiy Bozhko, Sebastien Detry, Christophe Diette, Patrick Wheeler,

Tópico(s)

Silicon Carbide Semiconductor Technologies

Resumo

This article shares with the aerospace community a case study of turboprop mild hybridization using a recently developed integrated drive system in the University of Nottingham, U.K., within the ACHIEVE project under EU H2020 CleanSky 2 program (project No. 737814). The developed drive system enables the green taxiing of a turboprop aircraft while on the ground with its engine OFF and as an electrical generator when the turboprop is in the air. The entire system is designed to be able to integrate within the power auxiliary gearbox (PAGB) of a turboprop aircraft. Some of the key features of the developed system include a high-speed permanent magnet machine (up to 14200 rpm) with a dual-three-phase design, silicon carbide (SiC)-based high power density (11.8 kW/L for the power converter, and 35.3 kW/L and 7.2 kW/kg for the machine active parts), integrated cooling design for high-temperature operation ( $>130~^{\circ }\text{C}$ ambient temperature), fault tolerance consideration with dual-channel operation capabilities, and sensorless control for entire operational conditions. This article is giving an overview of the design process of the electrical machine, power converters, and the cooling of the entire drive. The numerical analysis [finite element method (FEM) and computational fluid dynamics (CFD)] and some experimental results are presented to demonstrate the effectiveness and the desired performance of the developed integrated drive system.

Referência(s)