Artigo Acesso aberto

Hava Kirliliğinin Makine Öğrenmesi Tabanlı Tahmini: Başakşehir Örneği

2022; Volume: 4; Issue: 1 Linguagem: Turco

10.46387/bjesr.1055946

ISSN

2687-4415

Autores

Sibel Ünaldı, Nesibe Yalçın,

Tópico(s)

COVID-19 impact on air quality

Resumo

Şehir sakinleri için daha sağlıklı bir yaşam ortamının sağlaması ve onların hava kirliliğine maruziyetinin en aza indirilmesi oldukça önemlidir. Bunun için yapılabilecek çalışmalar arasında kirletici parametrelerine ilişkin ölçümlerin düzenli olarak yapılması ve izlenmesi, hava kirliliğinin tahmin edilmesi ve insan sağlığı üzerindeki etkilerinin erken değerlendirilmesi yer almaktadır. Bu çalışmada, makine öğrenmesi yöntemleri kullanılarak hava kirliliği tahmini gerçekleştirilmiştir. İstanbul ili Başakşehir ilçesinde 2016-2021 yılları arasında ölçülen çeşitli hava kirleticilerine ilişkin günlük ortalama konsantrasyonları ile rüzgar yönü, rüzgar hızı ve hava basıncı değerleri kullanılmıştır. PM10, CO, SO2, O2 ve O3 kirleticilerin konsantrasyonları, Çoklu Doğrusal Regresyon, Destek Vektör Makinaları, K En Yakın Komşu, Karar Ağaçları, Rastgele Orman ve Çok Katmanlı Algılayıcı Sinir Ağı yöntemleri ile tahmin edilmiştir. Elde edilen sonuçlar karşılaştırıldığında PM10, CO, SO2 ve O3 konsantrasyonları tahmininde Rastgele Orman yöntemi, NO2 tahmininde ise Çoklu Doğrusal Regresyon, en iyi sonuçları sunmuştur.

Referência(s)