Artigo Acesso aberto Revisado por pares

CB-RAF600E-1 exerts efficacy in vemurafenib-resistant and non-resistant-melanoma cells via dual inhibition of RAS/RAF/MEK/ERK and PI3K/Akt signaling pathways

2022; Elsevier BV; Volume: 29; Issue: 6 Linguagem: Inglês

10.1016/j.sjbs.2022.103285

ISSN

1319-562X

Autores

Mesfer Al Shahrani, Prasanna Rajagopalan, Mohammad Abohassan, Mohammad Y. Alshahrani, Yasser Alraey,

Tópico(s)

Cytokine Signaling Pathways and Interactions

Resumo

Predicting novel dual inhibitors to combat adverse effects such as the development of resistance to vemurafenib in melanoma treatment due to the reactivation of MAPK and PI3K/AKT signaling pathways is studied to help in reversal of cancer symptoms.Reversal of cancer symptoms in melanoma associated with vemurafenib resistance is driven by reactivation of MAPK and PI3K/Akt signaling pathways. Novel dual inhibitors targeting these proteins would be beneficial to combat resistance.High-throughput virtual screening of the ChemBridge library against B-RAFV600E and Akt was performed using an automated protocol with the AutoDock VINA program. Luminescence and time-resolved fluorescence kits were used to measure enzyme activities. The MTT assay was used to determine proliferation in normal and vemurafenib-resistant A375 cells. Flow cytometry was used to examine apoptosis, cell cycle, and phosphorylation of ERK/Akt signaling pathway.High-throughput screening from the ChemBridge library identified 15 compounds with high binding energy towards B-RAFV600E; among these, CB-RAF600E-1 had the highest ΔGbinding score -11.9 kcal/mol. The compound also had a high affinity towards Akt, with a ΔGbinding score of -11.5 kcal/mol. CB-RAF600E-1 dose-dependently inhibited both B-RAFV600E and Akt with IC50 values of 635 nM and 154.3 nM, respectively. The compound effectively controlled the proliferations of normal and vemurafenib-resistant A375 cells, with GI50 values of 222.3 nM and 230.5 nM, respectively. A dose-dependent increase in the sub G0/G1 phase of the cell cycle and total apoptosis was observed following compound treatment in both normal and vemurafenib-resistant melanoma cells. Treatment with CB-RAF600E-1 decreased the pERK/pAkt dual-positive populations in normal and vemurafenib-resistant A375 cells.CB-RAF600E-1, identified as a novel dual inhibitor effective against normal and vemurafenib-resistant melanoma cells, requires further attention for development as an effective chemotherapeutic agent for melanoma management.

Referência(s)