Characterization of tire and road wear microplastic particle contamination in a road tunnel: From surface to release
2022; Elsevier BV; Volume: 435; Linguagem: Inglês
10.1016/j.jhazmat.2022.129032
ISSN1873-3336
AutoresElisabeth S. Rødland, Ole Christian Lind, Malcolm J. Reid, Lene Sørlie Heier, Emelie Skogsberg, Brynhild Snilsberg, Dagfin Gryteselv, Sondre Meland,
Tópico(s)Asphalt Pavement Performance Evaluation
ResumoRoad pollution is one of the major sources of microplastic particles to the environment. The distribution of tire, polymer-modified bitumen (PMB) and tire and road wear particles (TRWP) in different tunnel compartments were explored: road surface, gully-pots and tunnel wash water. A new method for calculating TRWP using Monte Carlo simulation is presented. The highest concentrations on the surface were in the side bank (tire:13.4 ± 5.67;PMB:9.39 ± 3.96; TRWP:22.9 ± 8.19 mg/m2), comparable to previous studies, and at the tunnel outlet (tire:7.72 ± 11.2; PMB:5.40 ± 7.84; TRWP:11.2 ± 16.2 mg/m2). The concentrations in gully-pots were highest at the inlet (tire:24.7 ± 26.9; PMB:17.3 ± 48.8; TRWP:35.8 ± 38.9 mg/g) and comparable to values previously reported for sedimentation basins. Untreated wash water was comparable to road runoff (tire:38.3 ± 10.5; PMB:26.8 ± 7.33; TRWP:55.3 ± 15.2 mg/L). Sedimentation treatment retained 63% of tire and road wear particles, indicating a need to increase the removal efficiency to prevent these from entering the environment. A strong linear relationship (R2-adj=0.88, p < 0.0001) between total suspended solids (TSS) and tire and road wear rubber was established, suggesting a potential for using TSS as a proxy for estimating rubber loads for monitoring purposes. Future research should focus on a common approach to analysis and calculation of tire, PMB and TRWP and address the uncertainties related to these calculations.
Referência(s)