Artigo Acesso aberto Revisado por pares

PDXNet portal: patient-derived Xenograft model, data, workflow and tool discovery

2022; Oxford University Press; Volume: 4; Issue: 2 Linguagem: Inglês

10.1093/narcan/zcac014

ISSN

2632-8674

Autores

Soner Koc, Michael W. Lloyd, Jeffrey W. Grover, Nan Xiao, Sara Seepo, Sai Lakshmi Subramanian, Manisha Ray, Christian Frech, John J. DiGiovanna, Phillip Webster, Steven B. Neuhauser, Anuj Srivastava, Xing Yi Woo, Brian J. Sanderson, Brian S. White, Paul C. Lott, Lacey E. Dobrolecki, Heidi Dowst, Matthew H. Bailey, Emilio Cortes-Sanchez, Sandra D. Scherer, Chieh‐Hsiang Yang, Maihi Fujita, Zhengtao Chu, Ling Zhao, Andrew Butterfield, Argun Akçakanat, Boning Gao, Kurt W. Evans, Bingliang Fang, Don L. Gibbons, V. Behrana Jensen, Dara Keener, Michael Kim, Scott Kopetz, Mourad Majidi, David G. Menter, John D. Minna, Hyunsil Park, Fei Yang, Brenda C. Timmons, Jing Wang, Shannon N. Westin, Timothy A. Yap, Jianhua Zhang, Ran Zhang, Min Jin Ha, Huiqin Chen, Yuanxin Xi, Luc Girard, Erkan Yucan, Bryce P. Kirby, Bingbing Dai, Yi Xu, Alexey V. Sorokin, Kelly Gale, Jithesh J. Augustine, Stephen Scott, Ismail M. Meraz, Dylan Fingerman, Andrew V. Kossenkov, Qin Liu, Min Xiao, Jayamanna Wickramasinghe, Haiyin Lin, Eric G. Ramírez-Salazar, Katherine L. Nathanson, Mike Tetzlaff, George Xu, Vashisht G. Yennu-Nanda, Rebecca Aft, Jessica J. Andrews, Alicia Asaro, Song Cao, Feng Chen, Sherri R. Davies, John F. DiPersio, Ryan C. Fields, Steven M. Foltz, Katherine C. Fuh, Kian Guan Eric Lim, Jason M. Held, Jeremy Hoog, Reyka G. Jayasinghe, Yize Li, Jingqin Luo, X. Cynthia, R. Jay Mashl, Chia-Kuei Mo, Fernanda Rodriguez, Hua Sun, Nadezhda V. Terekhanova, Rose Tipton, Brian VanTine, Andrea Wang‐Gillam, Mike Wendl, Yige Wu, Matt A. Wyczalkowski, Lijun Yao, Daniel Cui Zhou, Matthew J. Ellis, Michael Ittmann, Susan G. Hilsenbeck, Bert W. O’Malley, Amanda Kirane, May Cho, David R. Gandara, Jonathan W. Reiss, Tiffany Le, Ralph de Vere White, Cliff G. Tepper, David Cooke, Luis A. Godoy, Lisa Brown, Marc Dall’Era, Christopher Evans, Rashmi Verma, Sepideh Gholami, David J. Segal, John G. Albeck, Edward N. Pugh, Susan L. Stewart, David M. Rocke, Hongyong Zhang, Nicole B. Coggins, Ana P. Estrada-Florez, Ted Toal, Alexa Morales, Guadalupe Polanco Echeverry, Sienna Rocha, Ai‐Hong Ma, Yvonne A. Evrard, Tiffany A. Wallace, Jeffrey A. Moscow, James H. Doroshow, Nicholas Mitsiades, Salma Kaochar, Chong-xian Pan, Moon S. Chen, Luis G. Carvajal‐Carmona, Alana L. Welm, Bryan E. Welm, Michael T. Lewis, Ramaswamy Govindan, Li Ding, Shunqiang Li, Meenhard Herlyn, Michael A. Davies, Jack A. Roth, Funda Meric‐Bernstam, Peter N. Robinson, Carol J. Bult, Brandi N. Davis‐Dusenbery, Dennis A. Dean, Jeffrey H. Chuang,

Tópico(s)

AI in cancer detection

Resumo

We created the PDX Network (PDXNet) portal (https://portal.pdxnetwork.org/) to centralize access to the National Cancer Institute-funded PDXNet consortium resources, to facilitate collaboration among researchers and to make these data easily available for research. The portal includes sections for resources, analysis results, metrics for PDXNet activities, data processing protocols and training materials for processing PDX data. Currently, the portal contains PDXNet model information and data resources from 334 new models across 33 cancer types. Tissue samples of these models were deposited in the NCI's Patient-Derived Model Repository (PDMR) for public access. These models have 2134 associated sequencing files from 873 samples across 308 patients, which are hosted on the Cancer Genomics Cloud powered by Seven Bridges and the NCI Cancer Data Service for long-term storage and access with dbGaP permissions. The portal includes results from freely available, robust, validated and standardized analysis workflows on PDXNet sequencing files and PDMR data (3857 samples from 629 patients across 85 disease types). The PDXNet portal is continuously updated with new data and is of significant utility to the cancer research community as it provides a centralized location for PDXNet resources, which support multi-agent treatment studies, determination of sensitivity and resistance mechanisms, and preclinical trials.

Referência(s)