Mapping the floristic continuum: Ordination space position estimated from imaging spectroscopy
2007; Wiley; Volume: 18; Issue: 1 Linguagem: Inglês
10.1658/1100-9233(2007)18[131
ISSN1654-1103
AutoresSebastian Schmidtlein, Paul Zimmermann, Ralf Schüpferling, Carola Weiß,
Tópico(s)Spectroscopy and Chemometric Analyses
ResumoJournal of Vegetation ScienceVolume 18, Issue 1 p. 131-140 Open Access Mapping the floristic continuum: Ordination space position estimated from imaging spectroscopy S. Schmidtlein, Corresponding Author S. Schmidtlein Biogeographie, Universität Bayreuth, DE-95440 Bayreuth, Germany Current address: Geographisches Institut, Universität Bonn, DE-53115 Bonn, Germany Corresponding author; E-mail s.schmidtlein@uni-bonn.deSearch for more papers by this authorP. Zimmermann, P. Zimmermann Biogeographie, Universität Bayreuth, DE-95440 Bayreuth, GermanySearch for more papers by this authorR. Schüpferling, R. Schüpferling Biogeographie, Universität Bayreuth, DE-95440 Bayreuth, GermanySearch for more papers by this authorC. Weiß, C. Weiß Sektion Geographie, Universität München, DE-80333 München, Germany; E-mail c.weiss@iggf.geo.uni-muenchen.deSearch for more papers by this author S. Schmidtlein, Corresponding Author S. Schmidtlein Biogeographie, Universität Bayreuth, DE-95440 Bayreuth, Germany Current address: Geographisches Institut, Universität Bonn, DE-53115 Bonn, Germany Corresponding author; E-mail s.schmidtlein@uni-bonn.deSearch for more papers by this authorP. Zimmermann, P. Zimmermann Biogeographie, Universität Bayreuth, DE-95440 Bayreuth, GermanySearch for more papers by this authorR. Schüpferling, R. Schüpferling Biogeographie, Universität Bayreuth, DE-95440 Bayreuth, GermanySearch for more papers by this authorC. Weiß, C. Weiß Sektion Geographie, Universität München, DE-80333 München, Germany; E-mail c.weiss@iggf.geo.uni-muenchen.deSearch for more papers by this author First published: 24 February 2007 https://doi.org/10.1111/j.1654-1103.2007.tb02523.xCitations: 81 Nomenclature: : Wisskirchen Haeupler (1998) for phanerogams Smith (1980) for mosses; Rennwald (2000) for syntaxa. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Abstract Objective: To present a non-classificatory technique of map representation of compositional patterns of vegetation as no two plant species assemblages are completely alike and gradations often occur. Variation is depicted as continuous fields instead of classes. Location: Murnauer Moos, Bavaria. Methods: The study combined vegetation ecology and remote sensing methods. The gradual representation of compositional patterns was based on techniques of ordination and regression, instead of mapping class fractions. The floristic field data were collected in relevés and subjected to three-dimensional non-metric multidimensional scaling (NMS). The reflectance information corresponding to plots was gathered from remotely sensed imagery with a high spectral resolution. Reflectance values in numerous wavelengths were related to NMS axes scores by partial least squares regression analysis. The regression equations were applied to the imagery and yielded three grey-scale images, one for each ordination axis. These three images were transformed into a red, green, and blue colour map with a specific colour for each position in the ordination space. Similar colours corresponded to similar species compositions. Results: Compositional variation was mapped accurately (R2= 0.79), using continuous fields. The results took account of various types of stand transitions and of heterogeneities within stands. The map representation featured relatively homogeneous stands and abrupt transitions between stands as well as within-stand heterogeneity and gradual transitions. Conclusions: The use of NMS in combination with imaging spectroscopy proved to be an expedient approach for non-classificatory map representations of compositional patterns. Ordination is efficiently extended into the geographic domain. The approach in abandoning pre-defined plant communities is able to reconcile mapping practice and complex reality. References Aspinall, R.J., Marcus, W.A. & Boardman, J.W. 2002. Considerations in collecting, processing, and analysing high spatial resolution hyperspectral data for environmental investigations. J. Geogr. Syst. 4: 15– 29. Austin, M.P. 1985. Continuum concept, ordination methods, and niche theory. Annu. Rev. Ecol. Syst. 16: 39– 61. Carter, G.A. 1993. Responses of leaf spectral reflectance to plant stress. Am. J. Bot. 80: 239– 243. Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18: 117– 143. Davies, H.C. 2001. Uncertainty testing in PLS regression. Spectroscopy Europe 13: 16– 19. de Lange, R., van Til, M. & Dury, S. 2004. The use of hyperspectral data in coastal zone vegetation monitoring. EARSeL eProc. 3: 143– 153. Dennison, P.E. & Roberts, D. A. 2003. The effects of vegetation phenology on endmember selection and species mapping in southern California chaparral. Remote Sens. Environ. 87: 295– 309. Dennison, P.E., Halligan, K.Q. & Roberts, D.A. 2004. A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper. Remote Sens. Environ. 93: 359– 367. Efron, B. & Tibshirani, R.J. 1993. An introduction to the bootstrap. Chapman & Hill, New York , NY, US . Foody, G.M. 1996. Fuzzy modelling of vegetation from remotely sensed imagery. Ecol. Model. 85: 3– 45. Fortin, M.J., Olson, R.J., Ferson, S., Iverson, L., Hunsaker, C., Edwards, G., Levine, D., Butera, K. & Klemas, V. 2000. Issues related to the detection of boundaries. Landscape Ecol. 15: 453– 466. Gleason, H. 1926. The individualistic concept of the plant association. Bull. Torrey Bot. Club 53: 7– 26. Green, D.R. & Hartley, S. 2000. Integrating photointerpretation and GIS for vegetation mapping: Some issues of error. In A.C. Millington (ed.) Vegetation mapping, pp. 103– 134. Wiley & Sons, Chichester , UK . Hill, M.O. & Gauch, H.G. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47– 58. Hobbs, E.R. 1986. Characterizing the boundary between California annual grassland and coastal sage scrub with differential profiles. Plant Ecol. 65: 115– 126. Humboldt, A.von 1807. Essai sur la géographie des plantes. Voyage de Humboldt et Bonpland, F. Schoell, Paris , FR . Kaule, G. 1974. Die Übergangs- und Hochmoore Süddeutsch-lands und der Vogesen. Cramer, Lehre , DE . Kenkel, N.C., Juhász-Nagy, P. & Podani, J. 1989. On sampling procedures in population and community ecology. Vegetatio, 83: 195– 207. Kent, M., Gill, W.J., Weaver, R.E. & Armitage, R.P. 1997. Landscape and plant community boundaries in biogeog-raphy. Progr. Phys. Geogr. 21: 315– 353. R. Kohavi (ed.) 1995. Astudy of cross-validation and bootstrap for accuracy estimation and model selection. International Joint Conference on Arteficial Intelligence (IJCAI) 2, pp. 1137– 1145. Morgan Kaufmann Publishers, San Francisco , CA, US . Kumar, L., Schmidt, K., Dury, S. & Skidmore, A. 2001. Imaging spectrometry and vegetation science. In: F.D. Meer & S.M. Jong (eds.), Imaging spectroscopy. Basic principles and prospective applications, pp. 111– 155. Kluwer Academic Publishers, Dordrecht , NL . Labovitz, M.L. 1986. Issues arising from sampling designs and band selection in discriminating ground reference attributes using remotely sensed data. Photogramm. Engin. Remote Sens. 52: 201– 211. Martens, H. & Martens, M. 2000. Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Quality and Preference 11: 5– 16. McCune, B. & Mefford, M.J. 1999. PC-ORD. Multivariate analysis of ecological data, Version 4. MjM Software Design, Gleneden Beach , OR, US . Mucina, L. 1997. Classification of vegetation: Past, present and future. J. Veg. Sci. 8: 751– 760. Mueller-Dombois, D. & Ellenberg, H. 1974. Aims and methods of Vegetation Ecology. John Wiley and Sons, New York , NY, US . E. Oberdorfer (ed.) 19931998. Süddeutsche Pflanzen-gesellschaften. 5 Vols. Fischer, Jena , DE . Ohman, J.L. & Gregory, M.J. 2002. Predictive mapping of forest composition and structure with direct gradient analysis and nearest-neighbor imputation in coastal Oregon, U.S.A. Can. J. For. Res. 32: 725– 741. Oppelt, N. & Mauser, W. 2004. Hyperspectral monitoring of physiological parameters of wheat during a vegetation period using AVIS data. Int. J. Remote Sens. 25: 145– 159. Palmer, M.W. & White, P.S. 1994. On the existence of ecological communities. J. Veg. Sci. 5: 279– 282. Rennwald, E. 2000. Verzeichnis und Rote Liste der Pflanzen-gesellschaften Deutschlands. Schriftenreihe für Vegeta-tionskunde, 35, Bundesamt für Naturschutz, Bonn-Bad Godesberg , DE . Roberts, D.A., Gardner, M., Church, R., Ustin, S., Scheer, G. & Green, R.O. 1998. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens. Environ. 65: 267– 279. Robinson, G.D., Gross, H.N. & Schott, J.R. 2000. Evaluation of two applications of spectral mixing models to image fusion. Remote Sens. Environ. 71: 272– 281. Schmidtlein, S. & Sassin, J. 2004. Mapping of continuous flo-ristic gradients in grasslands using hyperspectral imagery. Remote Sens. Environ. 92: 126– 138. Shepard, R.D. 1962. The analysis of proximities: Multidimensional scaling with an unknown distance function. Psychometrika 27: 125– 140. 219–246. Smith, A.J.E. 1980. The moss flora of Britain and Ireland. Cambridge University Press, Cambridge , UK . Smith, M.-L., Ollinger, S.V., Martin, M.E., Aber, J.D., Hallett, R.A. & Goodale, C.L. 2002. Direct estimation of above-ground forest productivity through hyperspectral remote sensing of canopy nitrogen. Ecol. Appl. 12: 1286– 1302. ter Braak, C.J.F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167– 1179. ter Braak, C.J.F. & de Jong, S.M. 1998. The objective function of partial least squares regression. J. Chemometrics 12: 41– 54. Thessler, S., Ruokolainen, K., Tuomisto, H. & Tomppo, E. 2005. Mapping gradual landscape-scale floristic changes in Amazonian primary rain forests by combining ordination and remote sensing. Global Ecol. Biogeogr. 14: 315– 325. Townsend, P. A. 2000. A quantitative fuzzy approach to assess mapped vegetation classifications for ecological applications. Remote Sens. Environ. 72: 253– 267. Townsend, P. A. & Walsh, S.J. 2001. Remote sensing of forested wetlands: application of multitemporal and multispectral satellite imagery to determine plant community composition and structure in southeastern USA. Plant Ecol. 157: 129– 149. Ustin, S., Roberts, D.A., Gamon, J.A., Asner, G.P. & Green, R.O. 2004. Using imaging spectroscopy to study ecosystem processes and properties. BioSci. 54: 523– 533. van de Ven, C.M. & Weiss, S.B. 2001. Mapping arid vegetation species distributions in the White Mountains, eastern California, using AVIRIS, topography, and geology. In: AVIRIS Proceedings: May 20 and 21, 1991. Jet Propulsion Laboratory, Pasadena , CA, US . van der Maarel, E. 1976. On the establishment of plant community boundaries. Ber. Dtsch. Bot. Ges. 89: 415– 443. F.D. Meer & S.M. Jong (eds.) 2001. Imaging spec-trometry. Remote sensing and digital image processing, Vol. 4. Kluwer Academic Publishers, Dordrecht , NL . K.P. Niel & B.G. Lees (eds.) 2003. The case for a data model to reconcile geographical and ecological paradigms. Proc. 4th International Conference on Integrating Geographic Information Systems and Environmental Modeling: Problems, prospectus, and needs for research. University of Colorado, Boulder , CO, US . Weaver, J.A. & Albertson, F.W. 1956. Grasslands of the Great Plains: their nature and use. Johnsen, Lincoln, NE , US . Whittaker, R.H. 1972. Convergences of ordination and classification. In: E. Maarel & R. Tüxen (eds.) Grundfragen und Methoden der Pflanzensoziologie, pp. 39– 57. W. Junk, The Hague , NL . Wisskirchen, R. & Haeupler, H. 1998. Standardliste der Farn-und Blütenpflanzen Deutschlands. Ulmer, Stuttgart , DE . Wold, H. 1966. Estimation of principal components and related models by iterative least squares. In: P.R. Krishnaiah (ed.) Multivariate analysis, pp. 391– 420. Academic Press, New York , NY, US . Zonneveld, I.S. 1974. On abstract and concrete boundaries, arranging and classification. In: R. Tüxen (ed.) Tatsachen und Probleme der Grenzen in der Vegetation. Bericht über das Internationale Symposion der Internationalen Vereinigung für Vegetationskunde in Rinteln 8.-11. April 1968, pp. 17– 43. Cramer, Lehre , DE . Citing Literature Volume18, Issue1February 2007Pages 131-140 ReferencesRelatedInformation
Referência(s)