Bioluminescence Color Determinants of Phrixothrix Railroad-worm Luciferases: Chimeric Luciferases, Site-directed Mutagenesis of Arg 215 and Guanidine effect¶
2007; Wiley; Volume: 72; Issue: 2 Linguagem: Inglês
10.1562/0031-8655(2000)0720267bcdopr2.0.co2
ISSN1751-1097
AutoresVadim R. Viviani, Yoshihiro Ohmiya,
Tópico(s)Biosensors and Analytical Detection
ResumoPhotochemistry and PhotobiologyVolume 72, Issue 2 p. 267-271 Bioluminescence Color Determinants of Phrixothrix Railroad-worm Luciferases: Chimeric Luciferases, Site-directed Mutagenesis of Arg 215 and Guanidine effect¶ V. R. Viviani, Corresponding Author V. R. Viviani Department of Molecular and Cell Biology, Harvard University, Cambridge, MA Department of Biochemistry, Faculty of Education, Shizuoka University, Shizuoka-shi, Japan *To whom correspondence should be addressed at: Department of Molecular and Cell Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA. [email protected]Search for more papers by this authorY. Ohmiya, Y. Ohmiya Department of Biochemistry, Faculty of Education, Shizuoka University, Shizuoka-shi, JapanSearch for more papers by this author V. R. Viviani, Corresponding Author V. R. Viviani Department of Molecular and Cell Biology, Harvard University, Cambridge, MA Department of Biochemistry, Faculty of Education, Shizuoka University, Shizuoka-shi, Japan *To whom correspondence should be addressed at: Department of Molecular and Cell Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA. [email protected]Search for more papers by this authorY. Ohmiya, Y. Ohmiya Department of Biochemistry, Faculty of Education, Shizuoka University, Shizuoka-shi, JapanSearch for more papers by this author First published: 01 May 2007 https://doi.org/10.1562/0031-8655(2000)0720267BCDOPR2.0.CO2Citations: 9 ¶ Posted on the web on 26 June 2000. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat ABSTRACT Chimeric proteins were produced using the green light–emitting luciferase of Phrixothrix vivianii (PxGr: λmax= 548 nm) and the red light–emitting luciferase of Phrixothrix hirtus (PxRe: λmax= 623 nm). Constructs containing residues 1–344 of the red light–emitting luciferase with residues 345–545 of the green light emitting one emitted red light (PxReGr; λmax= 613 nm), while the reverse emitted green light (PxGrRe; λmax= 552 nm). From these results we conclude that the region 1–344 determines the color of bioluminescence (BL) in railroad-worm luciferases, and that residues above 344 are not involved. The substitution R215S in the green light–emitting luciferase (PxGr) resulted in a ∼40 nm redshift on the BL spectrum (λmax= 585 nm) and an associated decrease of activity, whereas the same mutation in PxRe luciferase had little effect. Guanidine was shown to cause blueshifts in the BL spectra and stimulate the activity of the red-emitting luciferases (from λmax= 623 to λmax= 600 nm) and in PxGr R215S (from λmax= 585 to λmax= 560 nm) mutant luciferase, but not in the green-emitting luciferases, suggesting that guanidine can simulate positively charged residues involved in BL color determination. References 1 Wood, K. V. (1995) The chemical mechanism and evolutionary development of beetle bioluminescence. Photochem. Photobiol, 62, 662–673. 10.1111/j.1751-1097.1995.tb08714.x CASGoogle Scholar 2 McElroy, W. D., M. DeLuca 1978 Chemistry of firefly bioluminescence In Bioluminescence in Action (Edited by P. Herring), pp. 109–127. Academic Press, New York Google Scholar 3 Viviani, V. R., E. J. H. Bechara (1995) Bioluminescence of Brazilian fireflies (Coleoptera: Lampyridae): spectral distribution and pH effect on luciferase-elicited colors. Comparison with elaterid and phengodid luciferases. Photochem. Photobiol, 62, 490–495. 10.1111/j.1751-1097.1995.tb02373.x CASWeb of Science®Google Scholar 4 DeLuca, M. (1969) Hydrophobic nature of the active site of firefly luciferase. Biochemistry, 8, 160–166. 10.1021/bi00829a023 CASPubMedWeb of Science®Google Scholar 5 White, E. H., B. Branchini (1975) Modification of firefly luciferase with a luciferin analog. A red light producing enzyme. J. Am. Chem. Soc, 97, 1243–1245. 10.1021/ja00838a049 CASPubMedWeb of Science®Google Scholar 6 McCapra, F., D. J. Gilfoyle, D. W. Young, N. J. Church, P. Spencer 1994 The chemical origin of color differences in beetle bioluminescence In Bioluminescence and Chemiluminescence: Fundamental and Applied Aspects (Edited by A. K. Campbell, L. J. Kricka and P. E. Stanley), pp. 387–391. Wiley, Chichester Google Scholar 7 De Wet, J. R., K. V. Wood, D. R. Helinsky, M. DeLuca (1985) Cloning of firefly luciferase cDNA and expression of active luciferase in Escherichia coli.. Proc. Natl. Acad. Sci. USA, 82, 7870–7873. 10.1073/pnas.82.23.7870 CASPubMedWeb of Science®Google Scholar 8 Tatsumi, H., T. Masuda, N. Kajiyama, E. Nakano (1989) Luciferase cDNA from Japanese firefly Luciola cruciata: cloning, structure and expression in E. coli.. J. Biolumin. Chemilumin, 3, 75–78. 10.1002/bio.1170030208 CASPubMedWeb of Science®Google Scholar 9 Tatsumi, H., N. Kajiyama, E. Nakano (1992) Molecular cloning and expression in E. coli of a cDNA encoding luciferase of a firefly Luciola lateralis.. Biochim. Biophys. Acta, 1131, 161–165. 10.1016/0167-4781(92)90071-7 CASPubMedWeb of Science®Google Scholar 10 Devine, J. H., G. D. Kutuzova, V. A. Green, N. N. Ugarova, T. O. Baldwin (1993) Luciferase from the east European firefly Luciola mingrelica cloning and nucleotide sequence of cDNA, overexpression in E. coli and purification of the enzyme. Biochem. Biophys. Acta, 1173, 121–132. 10.1016/0167-4781(93)90172-A CASPubMedWeb of Science®Google Scholar 11 Ohmiya, Y., N. Ohba, H. Toh, F. I. Tsuji (1995) Cloning, expression and sequence analysis of cDNA for the luciferase from the Japanese fireflies, Pyrocoelia miyako and Hotaria parvula.. Photochem. Photobiol, 62, 309–313. 10.1111/j.1751-1097.1995.tb05273.x CASPubMedWeb of Science®Google Scholar 12 Sala-Newby, G. B., C. M. Thomson, A. K. Campbell (1996) Sequence and biochemical similarities between the luciferases of the glow-worm Lampyris noctiluca and the firefly Photinus pyralis.. Biochem. J, 313, 761–767. 10.1042/bj3130761 CASPubMedWeb of Science®Google Scholar 13 Li, Ye, L. M. Buck, H. J. Scaeffer, F. R. Leach (1997) Cloning and sequencing of a cDNA for firefly luciferase from Photuris pennsylvanica. Biochim. Biophys. Acta, 1339, 39–52. 10.1016/S0167-4838(96)00211-7 PubMedWeb of Science®Google Scholar 14 Wood, K. V., Y. A. Lam, H. H. Seliger, W. D. McElroy (1989) Complementary DNA coding click beetle luciferases can elicit bioluminescence of different colors. Science, 244, 700–702. 10.1126/science.2655091 CASPubMedWeb of Science®Google Scholar 15 Wood, K. V. (1990) Luc genes: introduction of colors into bioluminescence assays. J. Biol. Chemilumin, 5, 107–114. 10.1002/bio.1170050206 CASPubMedWeb of Science®Google Scholar 16 Ohmiya, Y., T. Hirano, M. Ohashi (1996) The structural origin of the color differences in the bioluminescence of firefly luciferase. FEBS Lett, 384, 83–86. 10.1016/0014-5793(96)00288-8 CASPubMedWeb of Science®Google Scholar 17 Branchini, B. R., R. A. Magyar, M. H. Murtishaw, S. M. Anderson, M. Zimmer (1998) Site-directed mutagenesis of Histidine 245 in firefly luciferase: a proposed model of the active site. Biochemistry, 37, 15 311–15 319. 10.1021/bi981150d Web of Science®Google Scholar 18 Kajiyama, N., E. Nakano (1991) Isolation and characterization of mutants of firefly luciferase which produce different colors of light. Protein Eng, 4, 691–693. 10.1093/protein/4.6.691 CASPubMedWeb of Science®Google Scholar 19 Mamaev, S. V., A. L. Laikhter, T. Arslan, S. M. Hecht (1996) Firefly luciferase: alteration of the color of emitted light resulting from substitutions at position 286. J. Am. Chem. Soc, 118, 7243–7244. 10.1021/ja961053c CASWeb of Science®Google Scholar 20 Ueda, H., H. Yamanouchi, A. Kitayama, K. Inoue, T. Hirano, E. Suzuki, T. Nagamune, Y. Ohmiya 1996 His-433 as a key residue for the color difference in firefly luciferase Hotaria parvula. In Bioluminescence and Chemiluminescence: Molecular Reporting with Photons (Edited by J. W. Hastings, L. J. Kricka and P. E. Stanley), pp. 216–219. Wiley, Chichester , Proceedings of the 9th International Symposium Web of Science®Google Scholar 21 Conti, E., N. P. Franks, P. Brick (1996) Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure, 4, 287–298. 10.1016/S0969-2126(96)00033-0 CASPubMedWeb of Science®Google Scholar 22 Viviani, V. R., E. J. H. Bechara, Y. Ohmiya (1999) Cloning, sequence analysis, and expression of active Phrixothrix railroad-worms luciferases: relationship between bioluminescence spectra and primary structures. Biochemistry, 38, 8271–8279. 10.1021/bi9900830 CASPubMedWeb of Science®Google Scholar 23 Sumiya, M., V. R. Viviani, N. Ohba, Y. Ohmiya 1988 Cloning and expression of a luciferase from the Japanese luminous beetle Ragophthalmus ohbai. (Edited by A. Roda, M. Pazzagli, L. J. Kricka and P. E. Stanley), pp. 433–436. Proceedings of the 10th International Symposium on Bioluminescence and Chemiluminescence, Bologna, Italy. John Wiley & Sons, New York Google Scholar 24 Viviani, V. R., A. C. R. Silva, G. L. O. Perez, R. V. Santelli, E. J. H. Bechara, F. C. Reinach (1999) Cloning and molecular characterization of the cDNA for the Brazilian larval click-beetle Pyrearinus termitilluminans luciferase. Photochem. Photobiol, 70, 254–260. 10.1111/j.1751-1097.1999.tb07997.x CASPubMedWeb of Science®Google Scholar 25 Sambrook, J., E. F. Fritsch, T. Maniatis 1989 Molecular Cloning, A Laboratory Manual, 2nd ed. Cold Spring Harbor, New York Google Scholar 26 Wood, K. V., M. DeLuca (1987) Photographic detection of luminescence in E. coli containing the gene of firefly luciferase. Anal. Biochem, 161, 501–507. 10.1016/0003-2697(87)90480-5 CASPubMedWeb of Science®Google Scholar 27 Mitchell, G., J. W. Hastings (1971) A stable inexpensive solid state photomultiplier photometer. Anal. Biochem, 39, 243–250. 10.1016/0003-2697(71)90481-7 CASPubMedWeb of Science®Google Scholar 28 Conti, E., T. Stachelhaus, M. A. Marahiel, P. Brick (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramidicin. EMBO J, 16, 4174–4183. 10.1093/emboj/16.14.4174 CASPubMedWeb of Science®Google Scholar 29 Rynkiewicz, M. J., B. A. Seaton (1996) Chemical rescue by guanidine derivatives of an arginine-substituted site-directed mutant of Escherichia coli ornithine transcarbamylase. Biochemistry, 35, 16 174–16 179. 10.1021/bi961311i Web of Science®Google Scholar 30 Boehlein, S. K., E. S. Walworth, N. G. J. Richards, S. M. Schuster (1997) Mutagenesis and chemical rescue indicate residues involved in β-aspartyl-AMP formation by Escherichia coli asparagine synthetase B. J. Biol. Chem, 272, 12 384–12 392. 10.1074/jbc.272.19.12384 Web of Science®Google Scholar 31 Huang, S., S.-C. Tu (1997) Identification and characterization of a catalytic base in bacterial luciferase by chemical rescue of a dark mutant. Biochemistry, 36, 14 609–14 615. 10.1021/bi9722554 Web of Science®Google Scholar 32 Smith, H. B., Hartman (1991) Demonstration of functional requirement for the carbamate nitrogen of ribulosebiphosphate carboxylase/oxygenase by chemical rescue. Biochemistry, 30, 5172–5177. 10.1021/bi00235a009 CASPubMedWeb of Science®Google Scholar Citing Literature Volume72, Issue2August 2000Pages 267-271 ReferencesRelatedInformation
Referência(s)