Artigo Acesso aberto Revisado por pares

On Infinite-Dimensional Linear Spaces

1945; American Mathematical Society; Volume: 57; Issue: 2 Linguagem: Inglês

10.2307/1990201

ISSN

1088-6850

Autores

George W. Mackey,

Tópico(s)

Advanced Topics in Algebra

Resumo

4) This is what Löwig calls the affine dimension.(6) By M-\-N we mean the smallest subspace containing M and N. Moreover if A is an arbitrary subset of a linear space then by A + we mean the smallest subspace containing A. We call A -J-the linear span of A.(6) Our use of the word linear differs from that of many writers in that it has no topological implications.

Referência(s)