Cellular mechanisms and the role of cytokines in bone erosions in rheumatoid arthritis
2000; Wiley; Volume: 43; Issue: 10 Linguagem: Inglês
10.1002/1529-0131(200010)43
ISSN1529-0131
AutoresEllen M. Gravallese, Steven R. Goldring,
Tópico(s)Bone Metabolism and Diseases
ResumoArthritis & RheumatismVolume 43, Issue 10 p. 2143-2151 Special ArticleFree to Read Cellular mechanisms and the role of cytokines in bone erosions in rheumatoid arthritis Ellen M. Gravallese, Corresponding Author Ellen M. Gravallese Beth Israel Deaconess Medical Center and New England Baptist Bone and Joint Institute, Harvard Institutes of Medicine, Harvard Medical School, Boston, MassachusettsHarvard Institutes of Medicine, Room 241, 4 Blackfan Circle, Boston, MA 02115Search for more papers by this authorSteven R. Goldring, Steven R. Goldring Beth Israel Deaconess Medical Center and New England Baptist Bone and Joint Institute, Harvard Institutes of Medicine, Harvard Medical School, Boston, MassachusettsSearch for more papers by this author Ellen M. Gravallese, Corresponding Author Ellen M. Gravallese Beth Israel Deaconess Medical Center and New England Baptist Bone and Joint Institute, Harvard Institutes of Medicine, Harvard Medical School, Boston, MassachusettsHarvard Institutes of Medicine, Room 241, 4 Blackfan Circle, Boston, MA 02115Search for more papers by this authorSteven R. Goldring, Steven R. Goldring Beth Israel Deaconess Medical Center and New England Baptist Bone and Joint Institute, Harvard Institutes of Medicine, Harvard Medical School, Boston, MassachusettsSearch for more papers by this author First published: 26 March 2001 https://doi.org/10.1002/1529-0131(200010)43:10 3.0.CO;2-SCitations: 111AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES 1 Goldring SR. Osteoporosis and rheumatic diseases. In: MJ Favus, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 3rd ed. Philadelphia: Lippincott-Raven; 1996. p. 299–301. 2 Deodhar AA, Woolf AD. Bone mass measurement and bone metabolism in rheumatoid arthritis: a review. Br J Rheumatol 1996; 35: 309–22. 3 Goldring SR, Polisson RP. Bone disease in rheumatological disorders. In: L Avioli, SM Krane, editors. Metabolic bone disease. 2nd ed. San Diego: Academic Press; 1998. p. 621–35. 4 Sharp JT, Wolfe F, Mitchell DM, Bloch DA. The progression of erosion and joint space narrowing scores in rheumatoid arthritis during the first twenty-five years of disease. Arthritis Rheum 1991; 34: 660–8. 5 Van Zeben D, Hazes JMW, Zwinderman AH, Vandenbroucke JP, Breedveld FC. Factors predicting outcome of rheumatoid arthritis: results of a followup study. J Rheumatol 1993; 20: 1288–96. 6 Foley-Nolan D, Stack JP, Ryan M, Redmond U, Barry C, Ennis J, et al. Magnetic resonance imaging in the assessment of rheumatoid arthritis: a comparison with plain film radiographs. Br J Rheumatol 1991; 30: 101–6. 7 McQueen FM, Stewart N, Crabbe J, Robinson E, Yeoman S, Tan PLJ, et al. Magnetic resonance imaging of the wrist in early rheumatoid arthritis reveals a high prevalence of erosions at four months after symptom onset. Ann Rheum Dis 1998; 57: 350–6. 8 McGonagle D, Conaghan PG, O'Connor P, Gibbon W, Green M, Wakefield R, et al. The relationship between synovitis and bone changes in early untreated rheumatoid arthritis: a controlled magnetic resonance imaging study. Arthritis Rheum 1999; 42: 1706–11. 9 Bresnihan B, Alvaro-Gracia JM, Cobby M, Doherty M, Domljan Z, Emery P, et al. Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. Arthritis Rheum 1998; 41: 2196–204. 10 Strand V, Cohen S, Schiff M, Weaver A, Fleischmann R, Cannon G, et al. Treatment of active rheumatoid arthritis with leflunomide compared with placebo and methotrexate. Arch Intern Med 1999; 159: 2542–50. 11 Finck B, Martin R, Fleischmann R, Moreland L, Schiff M, Bathon J. A phase III trial of etanercept vs methotrexate in early rheumatoid arthritis (Enbrel ERA trial) [abstract]. Arthritis Rheum 1999; 42 Suppl 9: S117. 12 Rau R, Herborn G. Healing phenomena of erosive changes in rheumatoid arthritis patients undergoing disease-modifying antirheumatic drug therapy. Arthritis Rheum 1996; 39: 162–8. 13 Weinblatt ME, Trentham DE, Fraser PA, Holdsworth DE, Falchuk KR, Weissman BN, et al. Long-term prospective trial of low-dose methotrexate in rheumatoid arthritis. Arthritis Rheum 1988; 31: 167–75. 14 Parfitt AM. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 1994; 55: 273–86. 15 Kahn A, Simmons D. Investigation of the cell lineage in bone using a chimera of chick and quail embryonic tissue. Nature 1975; 258: 325–7. 16 Walker DG. Osteopetrosis cured by temporary parabiosis. Science 1973; 180: 875. 17 Walker DG. Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science 1975; 190: 784–5. 18 Raisz LG. Local and systemic factors in the pathogenesis of osteoporosis. N Engl J Med 1988; 318: 818–28. 19 Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling; emerging insights into the pathophysiology of osteoporosis. N Engl J Med 1995; 332: 305–11. 20 Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappa B (RANK) receptors. J Exp Med 1999; 190: 1741–54. 21 Kurihara N, Gluck S, Roodman GD. Sequential expression of phenotype markers for osteoclasts during differentiation of precursors for multinucleated cells formed in long term human marrow cultures. Endocrinology 1990; 127: 3215–21. 22 Lee SK, Goldring SR, Lorenzo JA. Expression of the calcitonin receptor in bone marrow cell cultures and in bone: a specific marker of the differentiated osteoclast that is regulated by calcitonin. Endocrinology 1995; 136: 4572–81. 23 Faust J, Lacey DL, Hunt P, Burgess TL, Scully S, Van G, et al. Osteoclast markers accumulate on cells developing from human peripheral blood mononuclear precursors. J Cell Biochem 1999; 72: 67–80. 24 Suda T, Takahashi N, Martin TJ. Modulation of osteoclast differentiation. Endocr Rev 1992; 13: 66–80. 25 Hattersley G, Chambers TJ. Generation of osteoclastic function in mouse bone marrow cultures: multinuclearity and tartrate-resistant acid phosphatase are unreliable markers for osteoclastic differentiation. Endocrinology 1989; 124: 1689–96. 26 Suda T, Nakamura I, Jimi E, Takahashi N. Regulation of osteoclast function. J Bone Miner Res 1997; 12: 869–79. 27 Su Y, Chakraborty M, Nathanson MH, Baron R. Differential effects of the 3′,5′-cyclic adenosine monophosphate and protein kinase C pathways on the response of isolated rat osteoclasts to calcitonin. Endocrinology 1992; 131: 1497–502. 28 Chambers TJ, Hall TJ. Cellular and molecular mechanisms in the regulation and function of osteoclasts. Vitam Horm 1991; 46: 41–86. 29 Hattersley G, Chambers TJ. Calcitonin receptors as markers for osteoclastic differentiation: correlation between generation of bone-resorptive cells and cells that express calcitonin receptors in mouse bone marrow cultures. Endocrinology 1989; 125: 1606–12. 30 Suzuki Y, Nishikaku F, Nakatuka M, Koga Y. Osteoclast-like cells in murine collagen induced arthritis. J Rheumatol 1998; 25: 1154–60. 31 Kuratani T, Nagata K, Kukita T, Hotokebuchi T, Nakasima A, Iijima T. Induction of abundant osteoclast-like multinucleated giant cells in adjuvant arthritic rats with accompanying disordered high bone turnover. Histol Histopathol 1998; 13: 751–9. 32 Leisen JCC, Duncan H, Riddle JM, Pitchford WC. The erosive front: a topographic study of the junction between the pannus and the subchondral plate in the macerated rheumatoid metacarpal head. J Rheumatol 1988; 15: 17–22. 33 Bromley M, Woolley DE. Chondroclasts and osteoclasts at subchondral sites of erosion in the rheumatoid joint. Arthritis Rheum 1984; 27: 968–75. 34 Gorn AH, Lin HY, Yamin M, Auron PE, Flannery MR, Tapp DR, et al. Cloning, characterization and expression of a human calcitonin receptor from an ovarian carcinoma cell line. J Clin Invest 1992; 90: 1726–35. 35 Gravallese EM, Manning C, Tsay A, Naito A, Pan C, Amento E, et al. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum 2000; 43: 250–8. 36 Hummel KM, Petrow PK, Franz JK, Muller-Ladner U, Aicher WK, Gay RE, et al. Cysteine proteinase cathepsin K mRNA is expressed in synovium of patients with rheumatoid arthritis and is detected at sites of synovial bone destruction. J Rheumatol 1998; 25: 1887–94. 37 Gravallese EM, Harada Y, Wang JT, Gorn AH, Thornhill TS, Goldring SR. Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol 1998; 152: 943–51. 38 Romas E, Bakharevski O, Hards DK, Kartsogiannis V, Quinn JMW, Ryan PFJ, et al. Expression of osteoclast differentiation factor at sites of bone erosion in collagen-induced arthritis. Arthritis Rheum 2000; 43: 821–6. 39 Gorn AH, Rudolph SM, Flannery MR, Morton CC, Weremowicz S, Wang J-T, et al. Expression of two human skeletal calcitonin receptor isoforms cloned from a giant cell tumor of bone. J Clin Invest 1995; 95: 2680–91. 40 Strewler GJ. The physiology of parathyroid hormone-related protein. N Engl J Med 2000; 342: 177–85. 41 Okano K, Tsukazaki T, Ohtsuru A, Namba H, Osaki M, Iwasaki K, et al. Parathyroid hormone-related peptide in synovial fluid and disease activity of rheumatoid arthritis. Br J Rheumatol 1996; 35: 1056–62. 42 Funk JL, Cordaro LA, Wei H, Benjamin JB, Yocum DE. Synovium as a source of increased amino-terminal parathyroid hormone-related protein expression in rheumatoid arthritis; a possible role for locally produced parathyroid hormone-related protein in the pathogenesis of rheumatoid arthritis. J Clin Invest 1998; 101: 1362–71. 43 Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 2000; 191: 275–85. 44 Fuller K, Owens JM, Jagger CJ, Wilson A, Moss R, Chambers TJ. Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J Exp Med 1993; 178: 1733–44. 45 Lacey DL, Erdmann JM, Teitelbaum SL, Tan HL, Ohara J, Shioi A. Interleukin 4, interferon-gamma, and prostaglandin E impact the osteoclastic cell-forming potential of murine bone marrow macrophages. Endocrinology 1995; 136: 2367–76. 46 Romas E, Martin TJ. Cytokines in the pathogenesis of osteoporosis. Osteoporos Int 1997; 7: S47–53. 47 Feldmann M, Brennan F, Paleolog E, Taylor P, Maini RN. Anti-tumor necrosis factor alpha therapy of rheumatoid arthritis: mechanism of action. Eur Cytokine Netw 1997; 8: 297–300. 48 Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Ann Rev Immunol 1996; 14: 397–440. 49 Chu CQ, Field M, Feldmann M, Maini RN. Localization of tumor necrosis factor α in synovial tissues and at the cartilage–pannus junction in patients with rheumatoid arthritis. Arthritis Rheum 1991; 34: 1125–32. 50 Deleuran BW, Chu CQ, Field M, Brennan FM, Katsikis P, Feldmann M, et al. Localization of interleukin-1 alpha, type 1 interleukin-1 receptor and interleukin-1 receptor antagonist in the synovial membrane and cartilage/pannus junction in rheumatoid arthritis. Br J Rheumatol 1992; 31: 801–9. 51 Ghivizzani SC, Kang R, Georgescu HI, Lechman ER, Jaffurs D, Engle JM, et al. Constitutive intra-articular expression of human IL-1β following gene transfer to rabbit synovium produces all major pathologies of human rheumatoid arthritis. J Immunol 1997; 159: 3604–12. 52 Horai R, Saijo S, Tanioka H, Nakae S, Sudo K, Okahara A, et al. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J Exp Med 2000; 191: 313–20. 53 Joosten LAB, Helsen MMA, van de Loo FAJ, van den Berg WB. Anticytokine treatment of established type II collagen-induced arthritis in DBA/1 mice: a comparative study using anti-TNFα, anti–IL-1 α/β, and IL-1Ra. Arthritis Rheum 1996; 39: 797–809. 54 Joosten LAB, Helsen MMA, Saxne T, van de Loo FAJ, Heinegard D, van den Berg WB. IL-1 alpha beta blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-alpha blockade only ameliorates joint inflammation. J Immunol 1999; 163: 5049–55. 55 Makarov SS, Olsen JC, Johnston WN, Anderle SK, Brown RR, Baldwin AS Jr, et al. Suppression of experimental arthritis by gene transfer of interleukin 1 receptor antagonist cDNA. Proc Natl Acad Sci U S A 1996; 93: 402–6. 56 Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J 1991; 10: 4025–31. 57 Butler DM, Malfait AM, Mason LJ, Warden PJ, Kollias G, Maini RN, et al. DBA/1 mice expressing the human TNF-alpha transgene develop a severe, erosive arthritis: characterization of the cytokine cascade and cellular composition. J Immunol 1997; 159: 2867–76. 58 Williams RO, Feldmann M, Maini RN. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc Natl Acad Sci U S A 1992; 89: 9784–8. 59 Thorbecke GJ, Shah R, Leu CH, Kuruvilla AP, Hardison AM, Palladino MA. Involvement of endogenous tumor necrosis factor alpha and transforming growth factor beta during induction of collagen type II arthritis in mice. Proc Natl Acad Sci U S A 1992; 89: 7375–9. 60 Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki SI, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 1998; 95: 3597–602. 61 Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93: 165–76. 62 Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 2000; 15: 2–12. 63 Hofbauer LC, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S. Osteoprotegerin production by human osteoblast lineage cells is stimulated by vitamin D, bone morphogenetic protein-2, and cytokines. Biochem Biophys Res Commun 1998; 250: 776–81. 64 Horwood NJ, Elliott J, Martin TJ, Gillespie MT. Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. Endocrinology 1998; 139: 4743–6. 65 Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Goto M, et al. A novel molecular mechanism modulating osteoclast differentiation and function. Bone 1999; 25: 109–13. 66 Wong BR, Josien R, Lee SY, Sauter B, Li HL, Steinman RM, et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med 1997; 186: 2075–80. 67 Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997; 390: 175–9. 68 Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 1997; 272: 25190–4. 69 Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999; 402: 304–9. 70 Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A 1999; 96: 3540–5. 71 Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Yano K, et al. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun 1998; 253: 395–400. 72 Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 1998; 139: 1329–37. 73 Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999; 397: 315–23. 74 Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, de Smedt T, et al. RANK is essential for osteoclast and lymph node development. Genes Dev 1999; 13: 2412–24. 75 Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89: 309–19. 76 Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998; 12: 1260–8. 77 Takayanagi H, Iizuka H, Juji T, Nakagawa T, Yamamoto A, Miyazaki T, et al. Involvement of receptor activator of nuclear factor κB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum 2000; 43: 259–69. 78 Horwood NJ, Kartsogiannis V, Quinn JMW, Romas E, Martin TJ, Gillespie MT. Activated T lymphocytes support osteoclast formation in vitro. Biochem Biophys Res Commun 1999; 265: 144–50. 79 Fujikawa Y, Sabokbar A, Neale S, Athanasou NA. Human osteoclast formation and bone resorption by monocytes and synovial macrophages in rheumatoid arthritis. Ann Rheum Dis 1996; 55: 816–22. 80 Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 1996; 183: 2593–603. 81 Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999; 103: 1345–52. 82 Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, Frappart L, et al. Human interleukin-17: a T cell–derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum 1999; 42: 963–70. 83 Aarvak T, Chabaud M, Miossec P, Natvig JB. IL-17 is produced by some proinflammatory Th1/Th0 cells but not by Th2 cells. J Immunol 1999; 162: 1246–51. 84 Ogata Y, Kukita A, Kukita T, Komine M, Miyahara A, Miyazaki S, et al. A novel role of IL-15 in the development of osteoclasts: inability to replace its activity with IL-2. J Immunol 1999; 162: 2754–60. 85 McInnes IB, Leung BP, Sturrock RD, Field M, Liew FY. Interleukin-15 mediates T cell-dependent regulation of tumour necrosis factor-alpha production in rheumatoid arthritis. Nat Med 1997; 3: 189–95. 86 McInnes IB, Liew FY. Interleukin 15: a proinflammatory role in rheumatoid arthritis synovitis. Immunol Today 1998; 19: 75–9. 87 Horwood NJ, Udagawa N, Elliott J, Grail D, Okamura H, Kurimoto M, et al. Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor. J Clin Invest 1998; 101: 595–603. 88 Francis MD, Hovancik K, Boyce RW. NE-58095: a diphosphonate which prevents bone erosion and preserves joint architecture in experimental arthritis. Int J Tissue React 1989; 11: 239–52. 89 Pysklywec MW, Moran EL, Bogoch ER. Zoledronate (CGP 42'446), a bisphosphonate, protects against metaphyseal intracortical defects in experimental inflammatory arthritis. J Orthop Res 1997; 15: 858–61. 90 Eggelmeijer F, Papapoulos SE, van Paassen HC, Dijkmans BAC, Valkema R, Westedt ML, et al. Increased bone mass with pamidronate treatment in rheumatoid arthritis: results of a three-year randomized, double-blind trial. Arthritis Rheum 1996; 39: 396–402. 91 Kroger H, Arnala I, Alhava EM. Effect of calcitonin on bone histomorphometry and bone metabolism in rheumatoid arthritis. Calcif Tissue Int 1992; 50: 11–3. 92 Sileghem A, Geusens P, Dequeker J. Intranasal calcitonin for the prevention of bone erosion and bone loss in rheumatoid arthritis. Ann Rheum Dis 1992; 51: 761–4. Citing Literature Volume43, Issue10October 2000Pages 2143-2151 ReferencesRelatedInformation
Referência(s)