Artigo Revisado por pares

Binding of protons and zinc ions to transition states for tautomerization of α-heterocyclic ketones: implications for enzymatic reactions

1998; Wiley; Volume: 11; Issue: 89 Linguagem: Inglês

10.1002/(sici)1099-1395(199808/09)11

ISSN

1099-1395

Autores

Stephen Eustace, Geraldine M. McCann, Rory A. More O‘Ferrall, Michael G. Murphy, Brian A. Murray, Sinéad Walsh,

Tópico(s)

Biochemical Acid Research Studies

Resumo

Journal of Physical Organic ChemistryVolume 11, Issue 8-9 p. 519-528 Research Article Binding of protons and zinc ions to transition states for tautomerization of α-heterocyclic ketones: implications for enzymatic reactions Stephen J. Eustace, Stephen J. Eustace Department of Chemistry, University College Dublin, Belfield, Dublin 4, IrelandSearch for more papers by this authorGeraldine M. McCann, Geraldine M. McCann Department of Chemistry, University College Dublin, Belfield, Dublin 4, IrelandSearch for more papers by this authorRory A. More O'Ferrall, Corresponding Author Rory A. More O'Ferrall Department of Chemistry, University College Dublin, Belfield, Dublin 4, IrelandDepartment of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland===Search for more papers by this authorMichael G. Murphy, Michael G. Murphy Department of Chemistry, University College Dublin, Belfield, Dublin 4, IrelandSearch for more papers by this authorBrian A. Murray, Brian A. Murray Department of Chemistry, University College Dublin, Belfield, Dublin 4, IrelandSearch for more papers by this authorSinead M. Walsh, Sinead M. Walsh Department of Chemistry, University College Dublin, Belfield, Dublin 4, IrelandSearch for more papers by this author Stephen J. Eustace, Stephen J. Eustace Department of Chemistry, University College Dublin, Belfield, Dublin 4, IrelandSearch for more papers by this authorGeraldine M. McCann, Geraldine M. McCann Department of Chemistry, University College Dublin, Belfield, Dublin 4, IrelandSearch for more papers by this authorRory A. More O'Ferrall, Corresponding Author Rory A. More O'Ferrall Department of Chemistry, University College Dublin, Belfield, Dublin 4, IrelandDepartment of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland===Search for more papers by this authorMichael G. Murphy, Michael G. Murphy Department of Chemistry, University College Dublin, Belfield, Dublin 4, IrelandSearch for more papers by this authorBrian A. Murray, Brian A. Murray Department of Chemistry, University College Dublin, Belfield, Dublin 4, IrelandSearch for more papers by this authorSinead M. Walsh, Sinead M. Walsh Department of Chemistry, University College Dublin, Belfield, Dublin 4, IrelandSearch for more papers by this author First published: 18 December 1998 https://doi.org/10.1002/(SICI)1099-1395(199808/09)11:8/9 3.0.CO;2-YCitations: 13AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The description of catalysis in terms of binding of a catalyst to the transition state propoposed by Kurz is applied to tautomerization of the α-heterocyclic ketones phenacylpyridine, phenacylpyrazine, phenacylphenanthroline and phenylacetylpyridine catalysed by protons and zinc ions. Binding constants for protonated and zinc-coordinated transition states, KB≠ are reported and Brønsted coefficients are calculated from comparison of KB≠ with binding constants for the keto reactant and enolate anion intermediate. The formal equivalence of the binding formalism to a conventional Brønsted analysis is emphasized, and the results are compared with those from a ‘generalised’ Brønsted plot of rate constants against equilibrium constants for reactions of uncomplexed, protonated and zinc ion-coordinated ketones. This plot confirms that intrinsic reactivities of metal-coordinated and protonated substrates are similar even where differences exist between substrates. Application of a comparable Kurz–Brønsted treatment to enzymatic reactions depends in principle upon (a) dissecting binding contributions to catalysis from approximation of covalently reacting groups and (b) separating binding at the reaction site of the substrate, to which Kurz's treatment applies, from ‘remote’ binding, which, to a first approximation, is unchanged between Michaelis complex and transition state. The Brønsted relationship highlights stabilization of reactive intermediates as a thermodynamic driving force for binding catalysis at the reaction site. A formal expression which describes this stabilization, and also accommodates stabilization by remote binding of the substrate and intermediate by the enzyme, is proposed. Its relationship to the usual expression for application of the Kurz approach to enzyme catalysis, (kcat/k0)/Km = KB≠, is discussed and the usefulness of the Brønsted and Marcus relationships for interpreting KB≠ is emphasized. © 1998 John Wiley & Sons, Ltd. References 1 R. W. Hay, in Comprehensive Coordination Chemistry edited by G. Wilkinson, R. D. Gillard, and J. A. McCleverty, Vol. 6, p. 411. Pergamon Press, Oxford (1987), and references cited therein. 2(a) B. G. Cox, J. Am. Chem. Soc. 96, 6823 (1974). (b) P. De Maria, A. Fontana, M. Arlotta, S. Chimichi and D. Spinelli, J. Chem. Soc., Perkin Trans. 2 415 (1994), and references cited therein. 3 J. L. Kurz, Ace. Chem. Res. 5, 1 (1972). 4 O. S. Tee, Adv. Phys. Org. Chem. 29, 1 (1994). 5 J. E. Critchlow and H. B. Dunford, J. Theor. Biol. 37, 307 (1972). 6 A. R. E. Carey, R. A. More O'Ferrall, M. G. Murphy and B. A. Murray, J. Chem. Soc., Perkins Trans. 2 2471 (1994). A. Argile, A. R. E. Carey, R. A. More O'Ferrall, B. A. Murray and M. G. Murphy, J. Chem. Soc., Chem Commun. 1847 (1987). 7 R. Stewart and R. Srinivasan, Ace. Chem. Res. 11, 271 (1978). 8 A. R. Fersht, Enzyme Structure and Function, 2nd ed. Freeman, Reading (1985). 9 R. Wolfenden, Ace. Chem. Res. 5, 10 (1972). R. Wolfenden and L. Frick, in Enzyme Mechanisms, edited by M. I. Page, and A. Williams, p. 97. Royal Society of Chemistry, London (1987). 10 J. Kraut, Science 242, 533 (1988). 11 D. J. Murphy, Biochemistry 34, 4507 (1995). 12 R. Cacciapaglia and L. Mandolini, Chem. Soc. Rev. 221 (1993). 13 O. S. Tee and R. A. Donga, J. Chem. Soc., Perkin Trans. 2 2763 (1996), and references cited therein. 14 M. J. Hynes and E. M. Clarke, J. Chem. Soc., Perkin Trans. 2 901 (1994). T. H. Fife and M. P. Pujari, J. Am. Chem. Soc. 112, 5551 (1990), and references cited therein. 15 M. Cheong and D. L. Leussing, J. Am. Chem. Soc. 111, 2541 (1989). D. L. Leussing and M. Emly, J. Am. Chem. Soc. 106, 443 (1984). S.-J. Tsai and D. L. Leussing, Inorg. Chem. 26, 2620 (1987). 16 Y. Chiang, A. J. Kresge, J. A. Santaballa and J. Wirz, J. Am. Chem. Soc. 110, 1056 (1988). 17 G. McCann, R. A. More O'Ferrall, and S. Walsh, J. Chem. Soc., Perkin Trans. 2 2761 (1997). 18 A. R. E. Carey, S. Eustace, R. A. More O'Ferrall, and B. A. Murray, J. Chem. Soc., Perkin Trans. 2 2297 (1993). G. McCann, PhD Thesis, National University of Ireland (1991). S. Eustace, PhD Thesis, National University of Ireland (1994). 19 A. J. Kresge, and J. R. Keeffe, in The Chemistry ofEnols, edited by Z. Rappoport, Chapter 7, p. 399. Wiley, New York, 1990. 20 J. W. Bunting and D. Stefanidis, J. Am. Chem. Soc. 111, 5834 (1989). 21 R. A. Marcus, J. Am. Chem. Soc. 91, 7224 (1969). 22 C. F. Bernasconi, Adv. Phys. Org. Chem. 27, 119 (1992). 23 T. L. Amyes and J. P. Richard, J. Am. Chem. Soc. 118, 3129 (1996). J. P. Richard, Tetrahedron 51, 1535 (1995). 24 W. P. Jencks, Catalysis in Chemistry and Enzymology, 2nd ed. Dover, New York (1987). 25 M. I. Page, in The Chemistry of Enzyme Action, edited by M. I. Page, Chapter 1, p. 1. Elsevier, Oxford, (1984). M. I. Page, in Enzyme Mechanisms, edited by M. I. Page, and A. Williams, p. 1. Royal Society of Chemistry, London (1987). 26 J. P. Richard, in Enzyme Mechanisms, edited by M. I. Page, and A. Williams, p. 298. Royal Society of Chemistry, London (1987). 27 M. L. Sinnott, Chem. Rev. 90, 1173 (1990). J. P. Richard, R. E. Huber, C. Heo, T. L. Amyes and S. Lin, Biochemistry 35, 12387 (1996). 28 W. L. Mock and D. C. Y. Hua, J. Chem. Soc., Perkin Trans. 2 2069 (1995). 29 J. A. Gerlt and P. A. Gassman, J. Am. Chem. Soc. 115, 11552 (1993). 30 J. P. Guthrie and R. Kluger, J. Am. Chem. Soc. 115, 11569 (1993). 31 V. E. Anderson, P. M. Weiss and W. W. Cleland, Biochemistry 23, 2779 (1984). 32 R. L. Schowen, in Transition States of Biochemical Processes, edited by R. L. Schowen, and R. P. Gandour, Chapter 2, p. 77. Plenum Press, New York (1978). 33 M. I. Page and A. Williams, Organic andBioorganic Mechanisms. Addison Wesley Longman, Edinburgh (1997). 34 F. M. Menger, Ace. Chem. Res. 26, 206 (1993). F. M. Menger, Biochemistry 31, 5368 (1992). 35 W. P. Jencks, Cold Spring Harbour Symp. Quant. Biol. 52, 65 (1987). 36 W. P. Jencks, Proc. Natl. Acad. Sci. USA 78, 4046 (1981). 37 K. Curley and R. F. Pratt, J. Am. Chem. Soc. 119, 1529 (1997). R. Wolfenden and W. M. Kati, Ace. Chem. Res. 24, 209 (1991). Citing Literature Volume11, Issue8-9Special Issue: Special Issue on Organic ReactivityAugust ‐ September 1998Pages 519-528 ReferencesRelatedInformation

Referência(s)