Late proliferation of retinal Müller cell progenitors facilitates preferential targeting with retroviral vectors in vitro

1997; Wiley; Volume: 20; Issue: 3 Linguagem: Inglês

10.1002/(sici)1520-6408(1997)20

ISSN

1520-6408

Autores

Paul J. Linser, Burkhard Schloßhauer, Deni S. Galileo, William R. Buzzi, Rana C. Lewis,

Tópico(s)

Cytomegalovirus and herpesvirus research

Resumo

Developmental GeneticsVolume 20, Issue 3 p. 186-196 Late proliferation of retinal Müller cell progenitors facilitates preferential targeting with retroviral vectors in vitro Paul J. Linser, Corresponding Author Paul J. Linser [email protected] Whitney Laboratory, University of Florida, GainesvilleWhitney Laboratory, 9505 Ocean Shore Blvd., St. Augustine, FL 32086.Search for more papers by this authorBurkhard Schlosshauer, Burkhard Schlosshauer Naturwissenschaftliches und Medizinisches Institut an der Universitat Tübingen, Reutlingen, GermanySearch for more papers by this authorDeni S. Galileo, Deni S. Galileo Department of Cellular Biology and Anatomy, Medical College of Georgia, AugustaSearch for more papers by this authorWilliam R. Buzzi, William R. Buzzi Whitney Laboratory, University of Florida, GainesvilleSearch for more papers by this authorRana C. Lewis, Rana C. Lewis Whitney Laboratory, University of Florida, GainesvilleSearch for more papers by this author Paul J. Linser, Corresponding Author Paul J. Linser [email protected] Whitney Laboratory, University of Florida, GainesvilleWhitney Laboratory, 9505 Ocean Shore Blvd., St. Augustine, FL 32086.Search for more papers by this authorBurkhard Schlosshauer, Burkhard Schlosshauer Naturwissenschaftliches und Medizinisches Institut an der Universitat Tübingen, Reutlingen, GermanySearch for more papers by this authorDeni S. Galileo, Deni S. Galileo Department of Cellular Biology and Anatomy, Medical College of Georgia, AugustaSearch for more papers by this authorWilliam R. Buzzi, William R. Buzzi Whitney Laboratory, University of Florida, GainesvilleSearch for more papers by this authorRana C. Lewis, Rana C. Lewis Whitney Laboratory, University of Florida, GainesvilleSearch for more papers by this author First published: 06 December 1998 https://doi.org/10.1002/(SICI)1520-6408(1997)20:3 3.0.CO;2-3Citations: 15AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract During vertebrate neural retina development, the relationship between mitotic activity in progenitor cells and the acquisition of a mature cell phenotype remains an area of controversy. The Müller glial cell has long been recognized as one of the last cell types of the retina to mature, which occurs under the influence of cell–cell interactions. In this report we examine the acquisition of the Müller cell phenotype in relation to mitotic activity. Using immunohistochemical markers, we demonstrate that a gene product characteristic of mature Müller cells, the 2M6 antigen, is expressed in mitotically active cells, even after all the major retina architectural features have been laid down. Furthermore, we show that retroviral infection, a process that requires mitotically active cells, preferentially targets Müller cell progenitors when late embryonic retina is infected in vitro. The two lines of evidence are consistent with a model for Müller cell differentiation that includes a mitotically active progenitor that has already begun to express specific differentiation gene products. Dev. Genet. 20:186–196, 1997. © 1997 Wiley-Liss, Inc. References Adler ALM (1992): “ Adler's Physiology of the Eye.” 9th Ed. St. Louis: Mosby-Year Book. Google Scholar Adler R, Hatlee M (1989): Plasticity and differentiation of embryonic retinal cells after terminal mitosis. Science 243: 391–393. 10.1126/science.2911751 CASPubMedWeb of Science®Google Scholar Belcky-Adams T, Cook B, Adler R (1996): Correlations between terminal mitosis and differentiated fate of retinal precursor cells in vivo and in vitro: Analysis with the “window-labelling” technique. Dev Biol 178: 304–315. 10.1006/dbio.1996.0220 PubMedWeb of Science®Google Scholar Cepko C (1993): Lineage versus environment in the embryonic retina „Letter to the editor.”︁. TINS 16: 96–97. 10.1016/0166-2236(93)90131-5 CASPubMedWeb of Science®Google Scholar Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D (1996): Cell fate determination in the vertebrate retina. Proc Natl Acad Sci USA 93: 589–595. 10.1073/pnas.93.2.589 CASPubMedWeb of Science®Google Scholar Edelman GM (1983): Cell adhesion molecules. Science 219: 450–457. 10.1126/science.6823544 CASPubMedWeb of Science®Google Scholar Eisenfeld AJ, Bunt-Milam AH, Saari JC (1985): Localization of retinoid-binding proteins in developing rat retina. Exp Eye Res 41: 299–304. 10.1016/S0014-4835(85)80020-8 CASPubMedWeb of Science®Google Scholar Fadool JM, Linser PJ (1993a): Differential glycosylation of the 5A11/HT7 antigen by neural retina and epithelial tissues in the chicken. J Neurochem 60: 1354–1364. 10.1111/j.1471-4159.1993.tb03296.x CASPubMedWeb of Science®Google Scholar Fadool JM, Linser PJ (1993b): 5A11 Antigen is a cell recognition molecule which is involved in neuronal-glial interactions in avian neural retina. Dev Dynam 196: 252–262. 10.1002/aja.1001960406 CASPubMedWeb of Science®Google Scholar Fekete DM, Perez-Miguelsanz J, Ryder EF, Cepko CL (1994): Clonal analysis in the chicken retina reveals tangential dispersion of clonally related cells. Dev Biol 166: 666–682. 10.1006/dbio.1994.1346 CASPubMedWeb of Science®Google Scholar Fraser SE (1996): Iontophoretic dye labelling of embryonic cells. Methods Cell Biol 51: 147–160. 10.1016/S0091-679X(08)60627-5 CASPubMedWeb of Science®Google Scholar Galileo DS, Gray GE, Owens GC, Majors J, Sanes JR (1990): Neurons and glia arise from a common progenitor in chicken optic tectum: Demonstration with two retroviruses and cell type-specific antibodies. Proc Natl Acad Sci USA 87: 458–462. 10.1073/pnas.87.1.458 CASPubMedWeb of Science®Google Scholar Galileo DS, Majors J, Horwitz AF, Sanes JR (1992): Retrovirally introduced antisense integrin RNA inhibits neuroblast migration in vivo. Neuron 9: 1117–1131. 10.1016/0896-6273(92)90070-T CASPubMedWeb of Science®Google Scholar Halfter W, Deiss S (1986): Axonal pathfinding in organ-cultured embryonic avian retinae. Dev Biol 114: 296–310. 10.1016/0012-1606(86)90194-6 CASPubMedWeb of Science®Google Scholar Harris WA (1993): Lineage versus environment in the embryonic retina „Letter to the editor.”︁. TINS 16: 96. 10.1016/0166-2236(93)90130-E CASPubMedWeb of Science®Google Scholar Holt CE, Bertsch TW, Ellis HM, Harris WA (1988): Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron 1: 15–26. 10.1016/0896-6273(88)90205-X CASPubMedWeb of Science®Google Scholar Kahn AJ (1974): An autoradiographic analysis of the time of appearance of neurons in the developing chick neural retina. Dev Biol 38: 29–40. 10.1016/0012-1606(74)90256-5 Web of Science®Google Scholar Lagunowich LA, Grunwald GB (1989): Expression of calcium-dependent adhesion during ocular development: A biochemical, histochemical and functional analysis. Dev Biol 135: 158–171. 10.1016/0012-1606(89)90166-8 CASPubMedWeb of Science®Google Scholar Layer PG, Willbold E (1993): Histogenesis of the avian retina in reaggregation culture: from dissociated cells to laminar neuronal networks. Int Rev Cytol 146: 1–48. 10.1016/S0074-7696(08)60378-2 CASPubMedWeb of Science®Google Scholar Lemmon V, Reiser G (1983): The developmental distribution of vimentin in the chick retina. Invest Ophthalmol Vis Sci 24 (suppl): 258. Google Scholar Linser PJ (1988): Plasticity of retinal glioblast cells: Neuronal contact regulates phenotypic maturation of embryonic Müller cells. In JB Sheffield, SR Hilfer (eds): “ Cell Interactions in Visual Development.” New York: Springer-Verlag, pp 29–46. 10.1007/978-1-4612-3920-8_3 Google Scholar Linser PJ (1991): The roles and regulation of carbonic anhydrase in the vertebrate retina. In SJ Dodgson, RE Tashian, G Gros, ND Carter (eds): “ The Carbonic Anhydrases: Cellular Physiology and Molecular Genetics.” New York: Plenum, pp 309–317. 10.1007/978-1-4899-0750-9_26 Google Scholar Linser PJ, Moscona AA (1979): Induction of glutamine synthetase in embryonic neural retina: Localization in Müller fibers and dependence on cell interactions. Proc Natl Acad Sci USA 76: 6476–6480. 10.1073/pnas.76.12.6476 CASPubMedWeb of Science®Google Scholar Linser PJ, Moscona AA (1981): Carbonic anhydrase-C in the neural retina: Transition from generalized to glia-specific cell localization during embryonic development. Proc Natl Acad Sci USA 78: 7190–7194. 10.1073/pnas.78.11.7190 CASPubMedWeb of Science®Google Scholar Linser PJ, Moscona AA (1983): Hormonal induction of glutamine synthetase in cultures of embryonic retina cells: Requirement for neuron-glia interactions. Dev Biol 96: 529–534. 10.1016/0012-1606(83)90190-2 CASPubMedWeb of Science®Google Scholar Linser PJ, Moscona AA (1984): Variable CA-II compartmentalization in vertebrate retina. Ann NY Acad Sci 419: 430–446. 10.1111/j.1749-6632.1984.tb12369.x CASWeb of Science®Google Scholar Linser PJ, Sorrentino M, Moscona AA (1984a): Cellular compartmentalization of carbonic anhydrase-C and glutamine synthetase in developing and mature mouse neural retina. Dev Brain Res 13: 65–71. 10.1016/0165-3806(84)90077-4 CASWeb of Science®Google Scholar Linser PJ, Perkins MS, Fitch FW, Moscona AA (1984b): Comparative characterization of monoclonal antibodies to carbonic anhydrase-C. Biochem Biophys Res Commun 125: 690–697. 10.1016/0006-291X(84)90594-1 CASPubMedWeb of Science®Google Scholar Linser PJ, McClintock J, Possley J, Bingham S (1996): Fundamental aspects of Müller cell differentiation in vivo and in vitro and across species barriers. Invest Ophthalmol Vis Sci 37 (suppl): s693. Google Scholar Martin P, Carriere C, Dozier C, Quatannens B, Mirabel MA, Vandenbunder B, Stehlin D, Saule S (1992): Characterization of a paired box- and homeobox-containing quail gene (Pax-QNR) expressed in neuroretina. Oncogene 7: 1721–1728. CASPubMedWeb of Science®Google Scholar McCloon SC, Barnes RB (1989): Early differentiation of retinal ganglion cell: an axonal protein expressed by premigratory and migrating retinal ganglion cells. J Neurosci 9: 1424–1432. PubMedWeb of Science®Google Scholar Moscona AA (1961): Rotation-mediated histogenetic aggregation of dissociated cells: A quantifiable approach to cell interactions in vitro. Exp Cell Res 22: 455–475. 10.1016/0014-4827(61)90122-7 CASPubMedWeb of Science®Google Scholar Moscona AA, Fox L, Smith J, Degenstein L (1985): Antiserum to lens antigens immunostains Müller glia cells in the neural retina. Proc Natl Acad Sci USA 82: 5570–5573. 10.1073/pnas.82.16.5570 CASPubMedWeb of Science®Google Scholar Prada C, Puga J, Perez-Menedez L, Lopez R, Ramfrez, G (1991): Spatial and temporal patterns of neurogenesis in the chic retina. Eur J Neurosci 3: 559–569. 10.1111/j.1460-9568.1991.tb00843.x PubMedWeb of Science®Google Scholar Prada FA, Dorado ME, Quesada A, Prada C (1995): Early expression of a novel radial glia antigen in the chick embryo. Glia 15: 389–400. 10.1002/glia.440150404 CASPubMedWeb of Science®Google Scholar Price J, Turner D, Cepko, C (1987): Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc Natl Acad Sci USA 84: 156–160. 10.1073/pnas.84.1.156 CASPubMedWeb of Science®Google Scholar Riepe RE, Norenberg MD (1977): Müller cell localisation of glutamine synthetase in rat retina. Nature 268: 654–655. 10.1038/268654a0 CASPubMedWeb of Science®Google Scholar Sanes JR (1989): Analyzing cell lineage with a recombinant retrovirus. TINS 12: 21–28. 10.1016/0166-2236(89)90152-5 CASPubMedWeb of Science®Google Scholar Thor S, Ericson J, Brannstrom T, Edlund T (1991): The homeodomain LIM protein Isl-1 is expressed in subsets of neurons and endocrine cells in the adult rat. Neuron 7: 881–889. 10.1016/0896-6273(91)90334-V CASPubMedWeb of Science®Google Scholar Turner DL, Cepko CL (1987): A common progenitor for neurosn and glia persists in rat retina late in development. Nature 328: 131–136. 10.1038/328131a0 PubMedWeb of Science®Google Scholar Vinores SA, Derevajanik NL, Mahlow J, Hackett SF, Haller JA, deJuan E, Frankfurter A, Campochiaro PA (1995): Class III betatubulin in human retinal pigment epithelial cells in culture and in epiretinal membranes. Exp Eye Res 60: 385–400. 10.1016/S0014-4835(05)80095-8 CASPubMedWeb of Science®Google Scholar Williams RW, Goldowitz D (1992): Lineage versus environment in embryonic retina: A revisionist perspective. TINS 15: 368–373. 10.1016/0166-2236(92)90181-7 CASPubMedWeb of Science®Google Scholar Williams RW, Goldowitz D (1993): Lineage versus environment in the embryonic retina. „Reply to letters to the editor”︁ TINS 16: 98. 10.1016/0166-2236(93)90132-6 Web of Science®Google Scholar Citing Literature Volume20, Issue31997Pages 186-196 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX