Motif Transition in Growth Patterns of Small to Medium‐Sized Silicon Clusters
2005; Wiley; Volume: 117; Issue: 10 Linguagem: Inglês
10.1002/ange.200461753
ISSN1521-3757
AutoresSoohaeng Yoo, Xiao Cheng Zeng,
Tópico(s)Nanocluster Synthesis and Applications
ResumoAngewandte ChemieVolume 117, Issue 10 p. 1515-1518 Zuschrift Motif Transition in Growth Patterns of Small to Medium-Sized Silicon Clusters† Soohaeng Yoo, Soohaeng Yoo Department of Chemistry and Center for Materials Research & Analysis, University of Nebraska, Lincoln, NE 68588, USA, Fax: (+1) 402-472-9402Search for more papers by this authorXiao Cheng Zeng Prof., Xiao Cheng Zeng Prof. [email protected] Department of Chemistry and Center for Materials Research & Analysis, University of Nebraska, Lincoln, NE 68588, USA, Fax: (+1) 402-472-9402Search for more papers by this author Soohaeng Yoo, Soohaeng Yoo Department of Chemistry and Center for Materials Research & Analysis, University of Nebraska, Lincoln, NE 68588, USA, Fax: (+1) 402-472-9402Search for more papers by this authorXiao Cheng Zeng Prof., Xiao Cheng Zeng Prof. [email protected] Department of Chemistry and Center for Materials Research & Analysis, University of Nebraska, Lincoln, NE 68588, USA, Fax: (+1) 402-472-9402Search for more papers by this author First published: 22 February 2005 https://doi.org/10.1002/ange.200461753Citations: 11 † We thank Prof. T. Frauenheim, Prof. K.-M. Ho, Prof. K. A. Jackson, Prof. M. Jarrold, Prof. B. Pan, Dr. A. A. Shvartsburg, Dr. J. L. Wang, and Dr. J. J. Zhao for valuable discussions. This research was supported by grants from DOE (DE-FG02-04ER46164), NSF, Guggenheim Foundation, and Nebraska Research Initiatives (X.C.Z.) and by the Research Computing Facility and Bioinformatics Facility at University of Nebraska-Lincoln. Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Generisches Strukturmotiv: Energiearme kleine bis mittlere Siliciumcluster Sin (11<n<30) haben im Allgemeinen eine abgeflachte Form. Bei Si16 beginnende DFT-Rechnungen zeigen, dass Siliciumcluster statt dem dreifach überdachten trigonal-prismatischen Si9-Strukturmotiv (rosa) ein generisches Strukturmotiv aus einem gekrümmten Si6-Ring (dunkelgrün) und einem "magischen" Cluster wie tetragonal-bipyramidalem Si6 (hellgrün) bevorzugen. Supporting Information Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2001/2005/z461753_s.pdf or from the author. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1A. P. Alivisatos, Science 1996, 271, 933–936. 10.1126/science.271.5251.933 CASWeb of Science®Google Scholar 2D. Tománek, M. A. Schlüter, Phys. Rev. Lett. 1986, 56, 1055–1058. 10.1103/PhysRevLett.56.1055 CASPubMedWeb of Science®Google Scholar 3W. L. Brown, R. R. Freeman, K. Raghavachari, M. Schlüter, Science 1987, 235, 860–865. 10.1126/science.235.4791.860 CASPubMedWeb of Science®Google Scholar 4K. Raghavachari, C. M. Rohlfing, J. Chem. Phys. 1988, 89, 2219–2234. 10.1063/1.455065 CASWeb of Science®Google Scholar 5M. F. Jarrold, Science 1991, 252, 1085–1092. 10.1126/science.252.5009.1085 CASWeb of Science®Google Scholar 6E. C. Honea, A. Ogura, C. A. Murray, K. Raghavachari, W. O. Sprenger, M. F. Jarrold, W. L. Brown, Nature 1993, 366, 42–45. 10.1038/366042a0 CASWeb of Science®Google Scholar 7Q. L. Zhang, Y. Liu, R. F. Curl, F. K. Tittel, R. E. Smalley, J. Chem. Phys. 1988, 88, 1670–1677. 10.1063/1.454145 CASWeb of Science®Google Scholar 8M. F. Jarrold, J. E. Bower, J. Phys. Chem. 1989, 92, 5702–5705. 10.1021/j100331a031 Web of Science®Google Scholar 9M. F. Jarrold, V. A. Constant, Phys. Rev. Lett. 1991, 67, 2994–2997. 10.1103/PhysRevLett.67.2994 CASPubMedWeb of Science®Google Scholar 10C. C. Arnold, D. Neumark, J. Chem. Phys. 1993, 99, 3353–3362. 10.1063/1.465145 CASWeb of Science®Google Scholar 11K.-M. Ho, A. A. Shvartsburg, B. Pan, Z.-Y. Lu, C.-Z. Wang, J. G. Wacker, J. L. Fey, M. F. Jarrold, Nature 1998, 392, 582–585; 10.1038/33369 CASWeb of Science®Google ScholarB. Liu, Z.-Y. Lu, B. Pan, C.-Z. Wang, K.-M. Ho, A. A. Shvartsburg, M. F. Jarrold, J. Chem. Phys. 1998, 109, 9401–9409. 10.1063/1.477601 CASWeb of Science®Google Scholar 12I. Rata, A. A. Shvartsburg, M. Horoi, T. Frauenheim, K. W. M. Siu, K. A. Jackson, Phys. Rev. Lett. 2000, 85, 546–549. 10.1103/PhysRevLett.85.546 CASPubMedWeb of Science®Google Scholar 13B. X. Li, P. L. Cao, S.-C. Zhan, Phys. Lett. A 2003, 316, 252–260. 10.1016/S0375-9601(03)01173-3 CASWeb of Science®Google Scholar 14S. Yoo, X. C. Zeng, X. Zhu, J. Bai, J. Am. Chem. Soc. 2003, 125, 13 318–13 319. 10.1021/ja0365678 CASWeb of Science®Google Scholar 15A. Tekin, B. Hartke, Phys. Chem. Chem. Phys. 2004, 6, 503–509. 10.1039/b312450a CASWeb of Science®Google Scholar 16A. A. Shvartsburg, M. Horoi, K. A. Jackson, Spectroscopy of Emerging Materials, Kluwer, Berlin, 2004. Google Scholar 17K. A. Jackson, M. Horoi, I. Chaudhuri, T. Frauenheim, A. A. Shvartsburg, Phys. Rev. Lett. 2004, 93, 0134011–0134014. 10.1103/PhysRevLett.93.013401 CASWeb of Science®Google Scholar 18D. J. Wales, H. A. Scheraga, Science 1999, 285, 1368–1372. 10.1126/science.285.5432.1368 CASPubMedWeb of Science®Google Scholar 19Gaussian 03 (Revision A.1), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 2003. Google Scholar 20S. Yoo, X. C. Zeng, J. Chem. Phys. 2003, 119, 1442–1450. 10.1063/1.1581849 CASWeb of Science®Google Scholar 21J. Hutter, A. Alavi, T. Deutsch, M. Bernasconi, S. Goedecker, D. Marx, M. Tuckerman, M. Parrinello, CPMD, Version 3.7.1, MPI für Festkörperforschung Stuttgart, 1997–2001. Google Scholar 22S. Yoo, J. Zhao, J. Wang, X. C. Zeng, J. Am. Chem. Soc. 2004, 126, 13 845–13 849. 10.1021/ja046861f CASWeb of Science®Google Scholar Citing Literature Volume117, Issue10February 25, 2005Pages 1515-1518 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation
Referência(s)