Artigo Revisado por pares

Temporal and Spatial Variation of Episodic Wind Erosion in Unburned and Burned Semiarid Shrubland

2002; Wiley; Volume: 31; Issue: 2 Linguagem: Inglês

10.2134/jeq2002.0599

ISSN

1537-2537

Autores

Jeffrey Whicker, David D. Breshears, Piotr Wasiolek, Thomas B. Kirchner, Rebecca A. Tavani, D. Schoep, John Rodgers,

Tópico(s)

Aeolian processes and effects

Resumo

Journal of Environmental QualityVolume 31, Issue 2 p. 599-612 Landscape and Watershed Process Temporal and Spatial Variation of Episodic Wind Erosion in Unburned and Burned Semiarid Shrubland Jeffrey J. Whicker, Corresponding Author Jeffrey J. Whicker [email protected] Health Physics Measurements, Los Alamos National Laboratory, Mail Stop G761, Los Alamos, NM, 87545Corresponding author ([email protected])Search for more papers by this authorDavid D. Breshears, David D. Breshears Environmental Dynamics and Spatial Analysis, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Mail Stop J495, Los Alamos, NM, 87545Search for more papers by this authorPiotr T. Wasiolek, Piotr T. Wasiolek Health Physics Measurements, Los Alamos National Laboratory, Mail Stop G761, Los Alamos, NM, 87545Search for more papers by this authorThomas B. Kirchner, Thomas B. Kirchner Carlsbad Environmental Monitoring and Research Center, 1400 University Drive, Carlsbad, NM, 88220Search for more papers by this authorRebecca A. Tavani, Rebecca A. Tavani Health Physics Measurements, Los Alamos National Laboratory, Mail Stop G761, Los Alamos, NM, 87545Search for more papers by this authorDavid A. Schoep, David A. Schoep Carlsbad Environmental Monitoring and Research Center, 1400 University Drive, Carlsbad, NM, 88220Search for more papers by this authorJohn C. Rodgers, John C. Rodgers Health Physics Measurements, Los Alamos National Laboratory, Mail Stop G761, Los Alamos, NM, 87545Search for more papers by this author Jeffrey J. Whicker, Corresponding Author Jeffrey J. Whicker [email protected] Health Physics Measurements, Los Alamos National Laboratory, Mail Stop G761, Los Alamos, NM, 87545Corresponding author ([email protected])Search for more papers by this authorDavid D. Breshears, David D. Breshears Environmental Dynamics and Spatial Analysis, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Mail Stop J495, Los Alamos, NM, 87545Search for more papers by this authorPiotr T. Wasiolek, Piotr T. Wasiolek Health Physics Measurements, Los Alamos National Laboratory, Mail Stop G761, Los Alamos, NM, 87545Search for more papers by this authorThomas B. Kirchner, Thomas B. Kirchner Carlsbad Environmental Monitoring and Research Center, 1400 University Drive, Carlsbad, NM, 88220Search for more papers by this authorRebecca A. Tavani, Rebecca A. Tavani Health Physics Measurements, Los Alamos National Laboratory, Mail Stop G761, Los Alamos, NM, 87545Search for more papers by this authorDavid A. Schoep, David A. Schoep Carlsbad Environmental Monitoring and Research Center, 1400 University Drive, Carlsbad, NM, 88220Search for more papers by this authorJohn C. Rodgers, John C. Rodgers Health Physics Measurements, Los Alamos National Laboratory, Mail Stop G761, Los Alamos, NM, 87545Search for more papers by this author First published: 01 March 2002 https://doi.org/10.2134/jeq2002.5990Citations: 53Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat ABSTRACT Redistribution of soil, nutrients, and contaminants is often driven by wind erosion in semiarid shrublands. Wind erosion depends on wind velocity (particularly during episodic, high-velocity winds) and on vegetation, which is generally sparse and spatially heterogeneous in semiarid ecosystems. Further, the vegetation cover can be rapidly and greatly altered due to disturbances, particularly fire. Few studies, however, have evaluated key temporal and spatial components of wind erosion with respect to (i) erosion rates on the scale of weeks as a function of episodic high-velocity winds, (ii) rates at unburned and burned sites, and (iii) within-site spatial heterogeneity in erosion. Measuring wind erosion in unburned and recently burned Chihuahuan desert shrubland, we found (i) weekly wind erosion was related more to daily peak wind velocities than to daily average velocities as consistent with our findings of a threshold wind velocity at approximately 7 m s−1; (ii) greater erodibility in burned vs. unburned shrubland as indicated by erosion thresholds, aerodynamic roughness, and near-ground soil movement; and (iii) burned shrubland lost soil from intercanopy and especially canopy patches in contrast to unburned shrubland, where soil accumulated in canopy patches. Our results are among the first to quantify post-fire wind erosion and highlight the importance of accounting for finer temporal and spatial variation in shrubland wind erosion. This finer-scale variation relates to semiarid land degradation, and is particularly relevant for predictions of contaminant resuspension and redistribution, both of which historically ignore finer-scale temporal and spatial variation in wind erosion. References Allen, C.D. Drought-induced shift of a forest–woodland ecotone: Rapid landscape response to climate variation. Proc. Natl. Acad. Sci. USA 1998 95 14839–14842. https://doi.org/10.1073/pnas.95.25.14839 10.1073/pnas.95.25.14839 CASPubMedWeb of Science®Google Scholar Anspaugh, L.R. Resuspension and redistribution of plutonium in soils. Health Phys. 1975 29 571–582. https://doi.org/10.1097/00004032-197510000-00014, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1975AP79500014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1097/00004032-197510000-00014 CASPubMedWeb of Science®Google Scholar Archer, S. Mechanisms of shrubland expansion: Land use, climate, or CO2? Clim. Change 1995 29 91–99. https://doi.org/10.1007/BF01091640, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995QF13100004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1007/BF01091640 Web of Science®Google Scholar Bagnold, R.A. 1941. The physics of blown sand and desert dunes. Chapman and Hall Ltd., London. Google Scholar Bahre, C.J. 1995. Human impacts on the grasslands of southeastern Arizona. p. 230–264. In M.P. McClaran and and T.R. Van Devender (ed.) The desert grassland. The Univ. of Arizona Press, Tucson. Google Scholar Belnap, J. Vulnerability of desert biological soil crusts to wind erosion: The influences of crust development, soil texture, and disturbance. J. Arid Environ. 1998 39 133–142. https://doi.org/10.1006/jare.1998.0388 10.1006/jare.1998.0388 Web of Science®Google Scholar Belsky, A.J. Forest gaps and isolated savanna trees. BioScience 1994 44 77–84. https://doi.org/10.2307/1312205, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994MT98900005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.2307/1312205 Web of Science®Google Scholar Black, C.A., D.D. Evans, J.L. White, L.E. Ensminger, F.E. Clark, and R.C. Dinauer. 1965. Methods of soil analysis. Part 1. Physical and mineralogical properties, including statistics of measurement and sampling. Agron. Monogr. 9. ASA, Madison, WI. Google Scholar Breshears, D.D. The importance of rapid disturbance-induced losses in carbon management and sequestration. Global Ecol. Biogeogr. 2002 11 1–5. https://doi.org/10.1046/j.1466-822X.2002.00274.x 10.1046/j.1466-822X.2002.00274.x Web of Science®Google Scholar Breshears, D.D. Interrelationships between plant functional types and soil moisture heterogeneity for semiarid landscapes within the grassland/forest continuum: A unified conceptual model. Landscape Ecol. 1999 14 465–478. https://doi.org/10.1023/A:1008040327508 10.1023/A:1008040327508 Web of Science®Google Scholar Breshears, D.D. Effects of woody plants on microclimate in a semiarid woodland: Soil temperature and evaporation in canopy and intercanopy patches. Int. J. Plant Sci. 1998 159 1010–1017. https://doi.org/10.1086/314083, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000077495000013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1086/314083 Web of Science®Google Scholar Breshears, D.D. Overstory-imposed heterogeneity in solar radiation and soil moisture in a semiarid woodland. Ecol. Applic. 1997 7 1201–1215. https://doi.org/10.1890/1051-0761(1997)007[1201:OIHISR]2.0.CO;2 10.1890/1051-0761(1997)007[1201:OIHISR]2.0.CO;2 Web of Science®Google Scholar Burgess, T.L. 1995. Desert grassland, mixed shrub savanna, shrub steppe, or semidesert scrub? The dilemma of coexisting growth forms. p. 31–67. In M.P. McClaran and and T.R. Van Devender (ed.) The desert grassland. The Univ. of Arizona Press, Tucson. Web of Science®Google Scholar Cahill, T.A. Saltating particles, playa crusts and dust aerosols at Owens (Dry) Lake, California. Earth Surf. Processes Landforms 1996 21 621–639. https://doi.org/10.1002/(SICI)1096-9837(199607)21:7 3.0.CO;2-E, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996UX59100004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1002/(SICI)1096-9837(199607)21:7 3.0.CO;2-E CASWeb of Science®Google Scholar Cember, H. 1988. Introduction to health physics. Pergamon Press, Elmsford, NY. Google Scholar Carlsbad Environmental Monitoring and Research Center. 1998. 1997 report [Online]. Available at http://www.cemrc.nmsu.edu (verified 14 Nov. 2001). CEMRC, Carlsbad, NM. Google Scholar Coppinger, K.D. Net erosion on a sagebrush steppe landscape as determined by cesium-137 distribution. Soil Sci. Soc. Am. J. 1991 55 254–258. https://doi.org/10.2136/sssaj1991.03615995005500010043x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1991FA73200043&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.2136/sssaj1991.03615995005500010043x CASWeb of Science®Google Scholar Covington, W.W. Restoring ecosystem health in ponderosa pine forests of the southwest. J. For. 1997 95 (4) 23–29. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997WQ25500007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Web of Science®Google Scholar Davenport, D.W. Viewpoint: Sustainability of piñon–juniper ecosystems: A unifying perspective on soil erosion thresholds. J. Range Manage. 1998 51 231–240. https://doi.org/10.2307/4003212 10.2307/4003212 Web of Science®Google Scholar Dick-Peddie, W.A. 1993. New Mexico vegetation, past, present and future. Univ. of New Mexico Press, Albuquerque. Google Scholar Dong, Z.B. Drag coefficients, roughness length and zero-plane displacement height as disturbed by artificial standing vegetation. J. Arid Environ. 2001 49 485–505. https://doi.org/10.1006/jare.2001.0807 10.1006/jare.2001.0807 Web of Science®Google Scholar Easterling, D.R. Climate extremes: Observations, modeling, and impacts. Science 2000 289 2068–2074. https://doi.org/10.1126/science.289.5487.2068, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000089430900033&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1126/science.289.5487.2068 CASPubMedWeb of Science®Google Scholar Fryrear, D.W. Soil cover and wind erosion. Trans. ASAE 1985 28 781–784 10.13031/2013.32337 Web of Science®Google Scholar Fryrear, D.W. A field dust sampler. J. Soil Water Conserv. 1986 41 117–120. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1986A824100014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Web of Science®Google Scholar Fulé, P.Z. Determining reference conditions for ecosystem management of southwestern ponderosa pine forests. Ecol. Applic. 1997 7 (3) 895–908 10.1890/1051-0761(1997)007[0895:DRCFEM]2.0.CO;2 Web of Science®Google Scholar Garger, E.K Test of existing mathematical models for atmospheric resuspension of radionuclides. J. Environ. Radioact. 1999 42 157–175. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000077399600005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1016/S0265-931X(98)00052-6 CASWeb of Science®Google Scholar Gibbens, R.P. Soil movement in mesquite dunelands and former grasslands of southern New Mexico from 1933 to 1980. J. Range Manage. 1983 36 (2) 145–148 10.2307/3898148 Web of Science®Google Scholar Gillette, D.A. Threshold velocities for input of soil particles into the air by desert soils. J. Geophys. Res. [Oceans Atmos.] 1980 85 (C10) 5621–5630 10.1029/JC085iC10p05621 Web of Science®Google Scholar Gillette, D.A. Particle production and aeolian transport from a "supply-limited" source area in the Chihuahuan desert, New Mexico, United States. J. Geophys. Res. [Atmos.] 2001 106 (D6) 5267–5278 10.1029/2000JD900674 Web of Science®Google Scholar Godon, N.A. A climatology of airborne dust for the Red River Valley of North Dakota. Atmos. Environ. 1998 32 (9) 1587–1594. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000073711400011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1016/S1352-2310(97)00389-0 Google Scholar Goossens, D. Aeolian dust erosion on different types of hills in a rocky desert: Wind tunnel simulations and field measurements. J. Arid Environ. 1997 37 209–229. https://doi.org/10.1006/jare.1997.0282 10.1006/jare.1997.0282 Web of Science®Google Scholar Grover, H.D. Shrubland encroachment in southern New Mexico, U.S.A.: An analysis of desertification processes in the American southwest. Clim. Change 1990 17 305–330. https://doi.org/10.1007/BF00138373, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1990EJ17300008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1007/BF00138373 Web of Science®Google Scholar Havstad, K.M., J.E. Herrick, and W.H. Schlesinger. 2000. Desert rangelands, degradation and nutrients. p. 77–87. In O. Arnalds and and S. Archer (ed.) Rangeland desertification. Kluwer Academic Publishers, Dordrecht, the Netherlands. 10.1007/978-94-015-9602-2_7 Google Scholar Helgren, D.M. Wind velocities associated with dust deflation events in the western Sahara. J. Clim. Appl. Meteorol. 1987 26 1147–1151. https://doi.org/10.1175/1520-0450(1987)026 2.0.CO;2 10.1175/1520-0450(1987)026 2.0.CO;2 Web of Science®Google Scholar Hennessy, J.T. Vegetation changes from 1935 to 1980 in Mesquite dunelands and former grasslands of southern New Mexico. J. Range Manage. 1983 36 (3) 370–374 10.2307/3898490 Web of Science®Google Scholar Hennessy, J.T. Soil sorting by forty-five years of wind erosion on a southern New Mexico range. Soil Sci. Soc. Am. J. 1986 50 391–394. https://doi.org/10.2136/sssaj1986.03615995005000020027x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1986C037200027&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.2136/sssaj1986.03615995005000020027x Web of Science®Google Scholar Hinds, W.C. 1982. Aerosol technology: Properties, behavior, and measurement of airborne particles. John Wiley & Sons, New York. Google Scholar Huntsberger, D.V., and P. Billingsley. 1981. Elements of statistical inference. Allyn and Bacon, Boston. Google Scholar International Commission on Radiological Protection and Measurements. 1997. Human respiratory tract model for radiological protection. ICRP Publ. 66, Ann. ICRP 24 (1–4). Pergamon Press, Oxford. Google Scholar Johansen, M.P. Hydrologic response and radionuclide transport following fire at semiarid sites. J. Environ. Qual. 2001 30 2010–2017. https://doi.org/10.2134/jeq2001.2010, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000174863600018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.2134/jeq2001.2010 CASPubMedWeb of Science®Google Scholar Johnson, S.R. Multi-pathway, multi-site contaminant transport: Assessing vertical migration, wind erosion, and water erosion at semiarid DOE sites. Health Phys. 2000 78 (6) S159 Google Scholar Kashparov, V.A. Forest fires in the territory contaminated as a result of the Chernobyl accident: Radioactive aerosol resuspension and exposure of fire-fighters. J. Environ. Radioactivity 2000 51 281–298. https://doi.org/10.1016/S0265-931X(00)00082-5 10.1016/S0265-931X(00)00082-5 CASWeb of Science®Google Scholar Lee, W.W.-L. A critical evaluation of the 1992 performance assessment for the Waste Isolation Plant. Nucl. Eng. Des. 1997 168 325–338. https://doi.org/10.1016/S0029-5493(96)01358-1 10.1016/S0029-5493(96)01358-1 CASWeb of Science®Google Scholar Linsley, G.S. 1978. Resuspension of transuranium elements—A review of existing data. NRPB-R75. Natl. Radiation Protection Board, Didcot, UK. Google Scholar Liu, B.Y.H. Aerosol sampling inlets and inhalable particles. Atmos. Environ. 1981 15 589–600. https://doi.org/10.1016/0004-6981(81)90190-6 10.1016/0004-6981(81)90190-6 CASWeb of Science®Google Scholar J.A. Ludwig, D.J. Tongway, D.O. Freudenberger, J.C. Noble, and and K.C. Hodgkinson (ed.) 1997. Landscape ecology, function and management, principles from Austrailia's rangelands. CSIRO Publ., Collingwood, Australia. Google Scholar Martens, S.N. Spatial distributions of understory light along the grassland/forest continuum: Effects of cover, height, and spatial pattern of tree canopies. Ecol. Modell. 2000 126 79–93. https://doi.org/10.1016/S0304-3800(99)00188-X 10.1016/S0304-3800(99)00188-X Web of Science®Google Scholar Mast, J.N. Restoration of presettlement age structure of an Arizona ponderosa pine forest. Ecol. Applic. 1999 9 (1) 228–239 10.1890/1051-0761(1999)009[0228:ROPASO]2.0.CO;2 Web of Science®Google Scholar McPherson, G.R. 1995. The role of fire in the desert grasslands. p. 130–151. In M.P. McClaran and and T.R. Van Devender (ed.) The desert grassland. The Univ. of Arizona Press, Tucson. Google Scholar McPherson, G.R. 1997. Ecology and management of North American savannas. The Univ. of Arizona Press, Tucson. Google Scholar Musick, H.B. Field evaluation of relationships between a vegetation structural parameter and sheltering against wind erosion. Land Degrad. Rehabil. 1990 2 87–94. https://doi.org/10.1002/ldr.3400020203 10.1002/ldr.3400020203 Google Scholar Nicholson, K.W. Wind tunnel experiments on the resuspension of particulate material. Atmos. Environ. Part A 1993 27A (2) 181–188 10.1016/0960-1686(93)90349-4 CASWeb of Science®Google Scholar Nicholson, K.W. Resuspension in the outdoor environment. J. Aerosol Sci. 1994 25 (5) 743–744 Google Scholar Okin, G.S. Distribution of vegetation in wind-dominated landscapes: Implications for wind erosion modeling and landscape processes. J. Geophys. Res. [Atmos.] 2001 106 (D9) 9673–9683 10.1029/2001JD900052 Web of Science®Google Scholar Okin, G.S. Degradation of sandy arid shrubland environments: Observations, process modelling, and management implications. J. Arid Environ. 2001 47 123–144. https://doi.org/10.1006/jare.2000.0711 10.1006/jare.2000.0711 Web of Science®Google Scholar Paysen, T.E., R.J. Ansley, J.K. Brown, G.J. Gottfried, S.M. Haase, M.G. Harrington, M.G. Narog, S.S. Sackett, and R.C. Wilson. 2000. Fire in western shrubland, woodland, and grassland ecosystems. p. 121–159. In J.K. Brown and and J.K. Smith (ed.) Wildland fire in ecosystems, effects of fire on flora. Rep. RMRS-GTR-42. Volume 2. USDA, Ft. Collins, CO. Google Scholar Raupach, M.R. The effect of roughness elements on wind erosion threshold. J. Geophys. Res. [Atmos.] 1993 98 (D2) 3023–3029 10.1029/92JD01922 Web of Science®Google Scholar Reid, K.D. Runoff and erosion in a piñon–juniper woodland: Influence of vegetation patches. Soil Sci. Soc. Am. J. 1999 63 1869–1879. https://doi.org/10.2136/sssaj1999.6361869x 10.2136/sssaj1999.6361869x CASWeb of Science®Google Scholar Reynolds, R. Aeolian dust in Colorado Plateau soils: Nutrient inputs and recent change in source. Proc. Natl. Acad. Sci. USA 2001 98 7123–7127. https://doi.org/10.1073/pnas.121094298 10.1073/pnas.121094298 CASPubMedWeb of Science®Google Scholar Riley, R.G., J.M. Zachara, and F.J. Wobber. 1992. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research. DOE/ER-0547T. Available from the Natl. Tech. Info. Serv., U.S. Dep. of Commerce, Springfield, VA. 10.2172/5202264 Google Scholar Rodgers, J.C., P.T. Wasiolek, J.J. Whicker, C. Eberhart, K. Saxton, and D. Chandler. 2000. Performance evaluation of LANL environmental radiological air monitoring inlets at high wind velocities associated with resuspension. Rep. LA-UR-00-3091. Los Alamos Natl. Lab., Los Alamos, NM. Google Scholar Schlesinger, W.H. On the spatial pattern of soil nutrients in desert ecosystems. Ecology 1996 77 (2) 364–374 10.2307/2265615 Web of Science®Google Scholar Schlesinger, W.H. Biological feedbacks in global desertification. Science 1990 247 1043–1048. https://doi.org/10.1126/science.247.4946.1043 10.1126/science.247.4946.1043 CASPubMedWeb of Science®Google Scholar Scholes, R.J. Tree–grass interactions in savannas. Annu. Rev. Ecol. Syst. 1997 28 517–544. https://doi.org/10.1146/annurev.ecolsys.28.1.517 10.1146/annurev.ecolsys.28.1.517 Web of Science®Google Scholar Sehmel, G.A. 1976. Airborne 238Pu and 239Pu associated with the larger than 'respirable' particles at Rocky Flats during July 1973. BNWL-2119. Pacific Northwest Lab., Richland, WA. Google Scholar Sehmel, G.A. 1978. Plutonium concentrations in airborne soil at Rocky Flats and Hanford determined during resuspension experiments. PNL-SA-6720. Pacific Northwest Lab., Richland, WA. Google Scholar Sehmel, G.A. Particle resuspension: A review. Environ. Int. 1980 4 107–127. https://doi.org/10.1016/0160-4120(80)90005-7 10.1016/0160-4120(80)90005-7 Google Scholar Slinn, W.G.N. 1974. Dry deposition and resuspension of aerosol particles—A new look at some old problems. p. 1–40. In Proc. of the Symp. Atmosphere–Surface Exchange of Particulate and Gaseous Pollutants, Richland, WA. 3–6 Sept. 1974. CONF-740921. Natl. Tech. Info. Serv., Springfield, VA. Google Scholar StatSoft. 1994. STATISTICA for Windows Volume 1: General conventions and statistics I. StatSoft Release 5.0. StatSoft, Tulsa, OK. Google Scholar Stout, J.E. Effect of averaging time on apparent threshold for aeolian transport. J. Arid Environ. 1998 39 395–401. https://doi.org/10.1006/jare.1997.0370 10.1006/jare.1997.0370 Web of Science®Google Scholar Stout, J.E. Dust and environment in the Southern High Plains of North America. J. Arid Environ. 2001 47 425–441. https://doi.org/10.1006/jare.2000.0732 10.1006/jare.2000.0732 Web of Science®Google Scholar Stull, R.B. 1988. An introduction to boundary layer meteorology. Kluwer Academic Publ., Dordrecht, the Netherlands. 10.1007/978-94-009-3027-8 PubMedGoogle Scholar Swetnam, T.W. Applied historical ecology: Using the past to manage for the future. Ecol. Applic. 1999 9 (4) 1189–1206 10.1890/1051-0761(1999)009[1189:AHEUTP]2.0.CO;2 Web of Science®Google Scholar Swetnam, T.W. Mesoscale disturbance and ecological response to decadal climactic variability in the American southwest. J. Clim. 1998 11 (12) 3128–3147 10.1175/1520-0442(1998)011 2.0.CO;2 Web of Science®Google Scholar Tamura, T. 1976. Physical and chemical characteristics of plutonium in existing contaminated soils and sediments. p. 213–229. In Transuranium nuclides in the environment. Proc. Symp., San Francisco. 17–21 Nov. 1975. STI/PUB/410. IAEA, Vienna. Google Scholar United States Department of Energy. 1980. Final environmental impact statement, Waste Isolation Pilot Plant. DOE/EIS-0026. USDOE, Washington, DC. Google Scholar United States Department of Energy. 1997. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. DOE/EIS-0026-S-2. USDOE, Washington, DC. Google Scholar Van Auken, O.W. Shrub invasions of North American semiarid grasslands. Annu. Rev. Ecol. Syst. 2000 31 197–215. https://doi.org/10.1146/annurev.ecolsys.31.1.197 10.1146/annurev.ecolsys.31.1.197 Web of Science®Google Scholar Vanden Bygaart, A.J. Cautionary notes on the assumptions made in erosion studies using fallout 137Cs as a marker. Can. J. Soil Sci. 1999 79 (2) 395–397 Google Scholar Volchok, H.L. The respirable fraction of plutonium at Rocky Flats. Health Phys. 1972 23 395–396 Google Scholar Wilcox, B.P., J. Pitlick, C.D. Allen, and D.W. Davenport. 1996. Runoff and erosion from a rapidly eroding pinyon–juniper hillslope. p. 61–71. In M.G. Anderson and and S.M. Brooks (ed.) Advances in hillslope processes. John Wiley & Sons, New York. Google Scholar Wolfe, S.A. Shear stress partitioning in sparsely vegetated desert canopies. Earth Surf. Processes Landforms 1996 21 607–619. https://doi.org/10.1002/(SICI)1096-9837(199607)21:7 3.0.CO;2-1 10.1002/(SICI)1096-9837(199607)21:7 3.0.CO;2-1 Web of Science®Google Scholar Woodruff, N.P. A wind erosion equation. Soil Sci. Soc. Am. Proc. 1965 29 602–608. https://doi.org/10.2136/sssaj1965.03615995002900050035x 10.2136/sssaj1965.03615995002900050035x Google Scholar Zannetti, P. 1989. Simulating short-term, short-range air quality dispersion phenomena. p. 159–196. In Encyclopedia of environmental control technology. Volume 2. Gulf Publ. Company, Houston, TX. Google Scholar Zobeck, T.M. Management effects on wind-eroded sediment and plant nutrients. J. Soil Water Conserv. 1989 44 160–163 Web of Science®Google Scholar Citing Literature Volume31, Issue2March 2002Pages 599-612 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX