CD36 mediates binding of soluble thrombospondin-1 but not cell adhesion and haptotaxis on immobilized thrombospondin-1
1998; Wiley; Volume: 16; Issue: 3 Linguagem: Inglês
10.1002/(sici)1099-0844(199809)16
ISSN1099-0844
AutoresSandrine Magnetto, Gabriella Bruno‐Bossio, Carole Voland, Jean Lecerf, Jack Lawler, Pierre Delmas, Roy L. Silverstein, Philippe Clézardin,
Tópico(s)Lymphatic System and Diseases
ResumoCell Biochemistry and FunctionVolume 16, Issue 3 p. 211-221 Research Article CD36 mediates binding of soluble thrombospondin-1 but not cell adhesion and haptotaxis on immobilized thrombospondin-1 Sandrine Magnetto, Sandrine Magnetto INSERM Research Unit 403, Pavillon F, Hôpital Edouard Herriot, 69437 Lyon Cédex 03, FranceSearch for more papers by this authorGabriella Bruno-Bossio, Gabriella Bruno-Bossio INSERM Research Unit 403, Pavillon F, Hôpital Edouard Herriot, 69437 Lyon Cédex 03, FranceSearch for more papers by this authorCarole Voland, Carole Voland INSERM Research Unit 403, Pavillon F, Hôpital Edouard Herriot, 69437 Lyon Cédex 03, FranceSearch for more papers by this authorJean Lecerf, Jean Lecerf INSERM Research Unit 352, INSA, 69621 Villeurbanne Cédex, FranceSearch for more papers by this authorJack Lawler, Jack Lawler Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USASearch for more papers by this authorPierre Delmas, Pierre Delmas INSERM Research Unit 403, Pavillon F, Hôpital Edouard Herriot, 69437 Lyon Cédex 03, FranceSearch for more papers by this authorRoy Silverstein, Roy Silverstein Department of Medicine, Hematology/Oncology, Cornell Medical College, New York, NY 10021, USASearch for more papers by this authorPhilippe Clezardin PhD, DSc, Corresponding Author Philippe Clezardin PhD, DSc [email protected] INSERM Research Unit 403, Pavillon F, Hôpital Edouard Herriot, 69437 Lyon Cédex 03, FranceINSERM Research Unit 403, Pavillon F, Hôpital Edouard Herriot, Place d'Arsonval, 69437 Lyon Cédex 03, France. Tel: 33 472117486. Fax: 33 472117432.Search for more papers by this author Sandrine Magnetto, Sandrine Magnetto INSERM Research Unit 403, Pavillon F, Hôpital Edouard Herriot, 69437 Lyon Cédex 03, FranceSearch for more papers by this authorGabriella Bruno-Bossio, Gabriella Bruno-Bossio INSERM Research Unit 403, Pavillon F, Hôpital Edouard Herriot, 69437 Lyon Cédex 03, FranceSearch for more papers by this authorCarole Voland, Carole Voland INSERM Research Unit 403, Pavillon F, Hôpital Edouard Herriot, 69437 Lyon Cédex 03, FranceSearch for more papers by this authorJean Lecerf, Jean Lecerf INSERM Research Unit 352, INSA, 69621 Villeurbanne Cédex, FranceSearch for more papers by this authorJack Lawler, Jack Lawler Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USASearch for more papers by this authorPierre Delmas, Pierre Delmas INSERM Research Unit 403, Pavillon F, Hôpital Edouard Herriot, 69437 Lyon Cédex 03, FranceSearch for more papers by this authorRoy Silverstein, Roy Silverstein Department of Medicine, Hematology/Oncology, Cornell Medical College, New York, NY 10021, USASearch for more papers by this authorPhilippe Clezardin PhD, DSc, Corresponding Author Philippe Clezardin PhD, DSc [email protected] INSERM Research Unit 403, Pavillon F, Hôpital Edouard Herriot, 69437 Lyon Cédex 03, FranceINSERM Research Unit 403, Pavillon F, Hôpital Edouard Herriot, Place d'Arsonval, 69437 Lyon Cédex 03, France. Tel: 33 472117486. Fax: 33 472117432.Search for more papers by this author First published: 21 December 1998 https://doi.org/10.1002/(SICI)1099-0844(199809)16:3 3.0.CO;2-ZCitations: 17AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract In this study, we examined the binding of soluble TSP1 (and ox-LDL) to CD36-transfected cells and the mechanisms by which immobilized TSP1 mediated attachment and haptotaxis (cell migration towards a substratum-bound ligand) of these transfected cells. CD36 cDNA transfection of NIH 3T3 cells clearly induced a dramatic increase in binding of both soluble [125I]-TSP1 and [125I]-ox-LDL to the surface of CD36-transfected cells, indicating that there was a gain of function with CD36 transfection in NIH 3T3 cells. Despite this gain of function, mock- and CD36-transfected NIH 3T3 cells attached and migrated to a similar extent on immobilized TSP1. An anti-TSP1 oligoclonal antibody inhibited CD36-transfected cell attachment to TSP1 while function blocking anti-CD36 antibodies, alone or in combination with heparin, did not. A series of fusion proteins encompassing cell-recognition domains of TSP1 was then used to delineate mechanisms by which NIH 3T3 cells adhere to TSP1. Although CD36 binds soluble TSP1 through a CSVTCG sequence located within type 1 repeats,18,19 CD36-transfected NIH 3T3 cells did not attach to immobilized type 1 repeats while they did adhere to the N-terminal, type 3 repeats (in an RGD-dependent manner) and the C-terminal domain of TSP1. Conversely, Bowes melanoma cells attached to type 1 repeats and the N- and C-terminal domains of TSP1. However, CD36 cDNA transfection of Bowes cells did not increase cell attachment to type 1 repeats compared to that observed with mock-transfected Bowes cells. Moreover, a function blocking anti-CSVTCG peptide antibody did not inhibit the attachment of mock- and CD36-transfected Bowes cells to type 1 repeats. It is suggested that CD36/TSP1 interaction does not occur upon cell–matrix adhesion and haptotaxis because TSP1 undergoes conformational changes that do not allow the exposure of the CD36 binding site. © 1998 John Wiley & Sons, Ltd. References 1 O'Shea, K. S. and Dixit, V. M. (1988). Unique distribution of the extracellular matrix component thrombospondin in developing mouse embryo. J. Cell Biol., 107, 2737–2748. 10.1083/jcb.107.6.2737 PubMedWeb of Science®Google Scholar 2 Iruela-Arispe, M. L., Liska, D. J., Sage, E. H. and Bornstein, P. (1993). Differential expression of thrombospondin1, 2 and 3 during murine development. Dev. Dynamics, 197, 40–56. 10.1002/aja.1001970105 CASPubMedWeb of Science®Google Scholar 3 Clezardin, P. (1993). Expression of thrombospondin by cells in culture. In: Thrombospondin. ( J. Lahav, ed.) Academic Press: Boca Raton, pp. 41–61. Google Scholar 4 Bornstein, P. (1992). Thrombospondins: structure and regulation of expression. FASEB J., 6, 3290–3299. 10.1096/fasebj.6.14.1426766 CASPubMedWeb of Science®Google Scholar 5 Lawler, J., Machenry, K., Duquette, M. and Derick, L. (1995). Characterization of human thrombospondin-4. J. Biol. Chem., 270, 2809–2814. 10.1074/jbc.270.6.2809 CASPubMedWeb of Science®Google Scholar 6 Lahav, J. (1993). The functions of thrombospondin and its involvement in physiology and pathophysiology. Biochim. Biophys. Acta, 1182, 1–14. 10.1016/0925-4439(93)90146-R CASPubMedWeb of Science®Google Scholar 7 Roberts, D. D., Sherwood, J. A. and Ginsburg, V. (1987). Platelet thrombospondin mediates attachment and spreading of human melanoma cells. J. Cell Biol., 104, 131–139. 10.1083/jcb.104.1.131 CASPubMedWeb of Science®Google Scholar 8 Adams, J. C. and Lawler, J. (1993). Diverse mechanisms for cell attachment to platelet thrombospondin. J. Cell Sci., 104, 1061–1071. CASPubMedWeb of Science®Google Scholar 9 Adams, J. C. and Lawler, J. (1994). Cell-type specific adhesive interactions of skeletal myoblasts with thrombospondin-1. Mol. Cell Biol., 5, 423–437. 10.1091/mbc.5.4.423 CASPubMedWeb of Science®Google Scholar 10 Kosfeld, M. D. and Frazier, W. (1993). Identification of a new cell adhesion motif in two homologous peptides from the COOH-terminal cell binding domain of human thrombospondin. J. Biol. Chem., 268, 8808–8814. CASPubMedWeb of Science®Google Scholar 11 Asch, A., Tepler, J., Silbiger, S. and Nachman, R. L. (1991). Cellular attachment to thrombospondin: cooperative interactions between receptor systems. J. Biol. Chem., 266, 1740–1745. CASPubMedWeb of Science®Google Scholar 12 Stomski, F. C., Gani, J. S., Bates, R. C. and Burns, G. F. (1992). Adhesion to thrombospondin by human embryonic fibroblasts is mediated by multiple receptors and includes a role for glycoprotein 88 (CD 36). Exp. Cell Res., 198, 85–92. 10.1016/0014-4827(92)90152-X CASPubMedWeb of Science®Google Scholar 13 Clezardin, P., Lawler, J., Amiral, J., Quentin, G. and Delmas, P. (1997). Identification of cell adhesive active sites in the N-terminal domain of thrombospondin-1. Biochem. J., 321, 819–827. 10.1042/bj3210819 CASPubMedWeb of Science®Google Scholar 14 Kaesberg, P. R., Ershler, W. B., Esko, J. D. and Mosher, D. F. (1989). Chinese hamster ovary cell adhesion to human platelet thrombospondin is dependent on cell surface heparan sulfate proteoglycan. J. Clin. Invest., 83, 994–1001. 10.1172/JCI113986 CASPubMedWeb of Science®Google Scholar 15 Guo, N., Krutzsch, H. C., Négre, E., Zabrenetzky, V. S. and Roberts, D. D. (1992). Heparin-binding peptides from the type 1 repeats of thrombospondin: structural requirements for heparin binding and promotion of melanoma cell adhesion. J. Biol. Chem., 267, 19349–19355. CASPubMedWeb of Science®Google Scholar 16 Prater, C. A., Plotkin, J., Jaye, D. and Frazier, W. (1991). The properdin-like type 1 repeats of human thrombospondin contain a cell attachment site. J. Cell Biol., 112, 1031–1040. 10.1083/jcb.112.5.1031 CASPubMedWeb of Science®Google Scholar 17 Müller, H. M., Reckmann, I., Hollingdale, M. R., Bujard, H., Robson, K. J. H. and Crisanti, A. (1993). Thrombospondin related anonymous protein (TRAP) of Plasmodium falciparum binds specifically to sulfated glycoconjugates and to HepG2 hepatoma cells suggesting a role for this molecule in sporozoite invasion of hepatocytes. EMBO J., 12, 2881–2889. 10.1002/j.1460-2075.1993.tb05950.x CASPubMedWeb of Science®Google Scholar 18 Asch, A. S., Silbiger, S., Heimer, E. and Nachman, R. L. (1992). Thrombospondin sequence motif (CSVTCG) is responsible for CD36-binding. Biochem. Biophys. Res. Comm., 182, 1208–1217. 10.1016/0006-291X(92)91860-S CASPubMedWeb of Science®Google Scholar 19 Li, W., Howard, R. J. and Leung, L. L. K. (1993). Identification of SVTCG in thrombospondin as the conformation-dependent, high affinity binding site for its receptor, CD 36. J. Biol. Chem., 268, 16179–16184. CASPubMedWeb of Science®Google Scholar 20 Tuszynski, G. P., Rothman, V. L., Papale, M., Hamilton, B. K. and Eyal, J. (1993). Identification and characterization of a tumor cell receptor for CSVTCG, a thrombospondin adhesive domain. J. Cell Biol., 120, 513–521. 10.1083/jcb.120.2.513 CASPubMedWeb of Science®Google Scholar 21 Lawler, J., Weinstein, R. and Hynes, R. O. (1988). Cell attachment to thrombospondin: the role of arg-gly-asp, calcium and integrin receptors. J. Cell Biol., 107, 2351–2361. 10.1083/jcb.107.6.2351 CASPubMedWeb of Science®Google Scholar 22 Karczewski, J., Knudsen, K. A., Smith, L., Murphy, A., Rothman, V. L. and Tuszynski, G. P. (1989). The interaction of thrombospondin with platelet glycoprotein GPIIb-IIIa complex. J. Biol. Chem., 264, 21322–21326. CASPubMedWeb of Science®Google Scholar 23 Gao, A., Lindberg, F. P., Finn, M. B., Blystone, S. D., Brown, E. J. and Frazier, W. (1996). Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J. Biol. Chem., 271, 21–24. 10.1074/jbc.271.1.21 CASPubMedWeb of Science®Google Scholar 24 Greenwalt, D. E., Lipsky, R. H., Ockenhouse, C. F., Ikeda, H., Tandon, N. N. and Jamieson, G. A. (1992). Membrane glycoprotein CD36: a review of its roles in adherence, signal transduction, and transfusion medicine. Blood, 80, 1105–1115. 10.1182/blood.V80.5.1105.1105 CASPubMedWeb of Science®Google Scholar 25 McGregor, J. L., Catimel, B., Parmentier, S., Clezardin, P., Dechavanne, M. and Leung, L. L. K. (1989). Rapid purification and partial characterization of human platelet glycoprotein IIIb. Interaction with thrombospondin and its role in platelet aggregation. J. Biol. Chem., 264, 501–506. CASPubMedWeb of Science®Google Scholar 26 Silverstein, R. L., Baird, M., Lo, S. K. and Yesner, L. M. (1992). Sense and antisense c DNA transfection of CD36 (glycoprotein IV) in melanoma cells. Role of CD36 as a thrombospondin receptor. J. Biol. Chem., 267, 16607–16612. CASPubMedWeb of Science®Google Scholar 27 Tandon, N., Kralisz, U. and Jamieson, G. A. (1989). Identification of glycoprotein IV (CD36) as a primary receptor for platelet-collagen adhesion. J. Biol. Chem., 264, 7576–7583. 10.1016/S0021-9258(18)83273-2 CASPubMedWeb of Science®Google Scholar 28 Oquendo, P., Hundt, E., Lawler, J. and Seed, B. (1989). CD36 directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes. Cell, 58, 95–101. 10.1016/0092-8674(89)90406-6 CASPubMedWeb of Science®Google Scholar 29 Endemann, G., Stanton, L. W., Madden, K. S., Bryant, C. M., White, R. T. and Protter, A. A. (1993). CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem., 268, 11811–11816. 10.1016/S0021-9258(19)50272-1 CASPubMedWeb of Science®Google Scholar 30 Abumrad, N. A., El-Maghrabi, M. R., Amri, E., Lopez, E. and Grimaldi, P. A. (1993). Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. J. Biol. Chem., 268, 17665–17668. CASPubMedWeb of Science®Google Scholar 31 Agbanyo, F. R., Sixma, J. J., de Groot, P. G., Languino, L. R. and Plow, E. F. (1993). Thrombospondin-platelet interactions. Role of divalent cations, wall shear rate, and platelet membrane glycoproteins. J. Clin. Invest., 92, 288–296. 10.1172/JCI116563 CASPubMedWeb of Science®Google Scholar 32 Tandon, N. N., Ockenhouse, C. F., Greco, N. J. and Jamieson, G. A. (1991). Adhesive functions of platelets lacking glycoprotein IV (CD36). Blood, 78, 2809–2813. CASPubMedWeb of Science®Google Scholar 33 Silverstein, R. L., Asch, A. S. and Nachman, R. L. (1989). Glycoprotein IV mediates thrombospondin-dependent platelet-monocyte and platelet-U937 cell adhesion. J. Clin. Invest., 84, 546–552. 10.1172/JCI114197 CASPubMedWeb of Science®Google Scholar 34 Varani, J., Stoolman, L., Wang, T., Schuger, L., Flippen, C., Dame, M., Johnson, K. J., Todd III, R. F., Ryan, U. S. and Ward, P. A. (1991). Thrombospondin production and thrombospondin-mediated adhesion in U937 cells. Exp. Cell Res., 195, 177–182. 10.1016/0014-4827(91)90514-U CASPubMedWeb of Science®Google Scholar 35 Mansfield, P. J. and Suchard, S. J. (1994). Thrombospondin promotes chemotaxis and haptotaxis of human peripheral blood monocytes. J. Immunol., 153, 4219–4229. CASPubMedWeb of Science®Google Scholar 36 Chen, Z. S., Pohl, J., Lawley, T. J. and Swerlick, R. A. (1996). Human microvascular endothelial cells adhere to thrombospondin-1 via an RGD/CSVTCG domain independent mechanism. J. Invest. Dermatol., 106, 215–220. 10.1111/1523-1747.ep12340475 CASPubMedWeb of Science®Google Scholar 37 Dawson, D. W., Pearce, S. F. A., Zhong, R., Silverstein, R. L., Frazier, W. A. and Bouck, N. P. (1997). CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J. Cell Biol., 138, 707–717. 10.1083/jcb.138.3.707 CASPubMedWeb of Science®Google Scholar 38 Ugarova, T., Agbanyo, F. R. and Plow, E. F. (1995). Conformational changes in adhesive proteins modulate their adhesive function. Thromb. Haemostas., 74, 253–257. CASPubMedWeb of Science®Google Scholar 39 Nicholson, A. C., Pearce, S. F. A. and Silverstein, R. L. (1995). Oxidized LDL binds to CD36 on human monocytederived macrophages and transfected cell lines. Arterioscler. Thromb. Vasc. Biol., 15, 269–275. 10.1161/01.ATV.15.2.269 CASPubMedWeb of Science®Google Scholar 40 Clezardin, P., Serre, C. M., Trzeciak, M. C., Drouin, J. and Delmas, P. D. (1991). Thrombospondin binds to the surface of human osteosarcoma cells and mediates platelet-osteosarcoma cell interaction. Cancer Res., 51, 2621–2627. CASPubMedWeb of Science®Google Scholar 41 Gantt, S. M., Clavijo, P., Bai, X., Esko, J. D. and Sinnis, P. (1997). Cell adhesion to a motif shared by the malaria circumsporozoite protein and thrombospondin is mediated by its glycosaminoglycan-binding region and not by CSVTCG. J. Biol. Chem., 272, 19205–19213. 10.1074/jbc.272.31.19205 CASPubMedWeb of Science®Google Scholar 42 Magnetto, S. and Clezardin, P., unpublished results. Google Scholar 43 Seiffert, D. and Smith, J. W. (1997). The cell adhesion domain in plasma vitronectin is cryptic. J. Biol. Chem., 272, 13705–13710. 10.1074/jbc.272.21.13705 CASPubMedWeb of Science®Google Scholar Citing Literature Volume16, Issue3September 1998Pages 211-221 ReferencesRelatedInformation
Referência(s)