Sequential Supercritical Fluid Extraction (SSFE) for Estimating the Availability of High Molecular Weight Polycyclic Aromatic Hydrocarbons in Historically Polluted Soils
2004; Wiley; Volume: 33; Issue: 1 Linguagem: Inglês
10.2134/jeq2004.0080
ISSN1537-2537
AutoresOliver H. J. Szolar, Helmut Rost, Doris Hirmann, Marion Hasinger, Rudolf Braun, Andreas P. Loibner,
Tópico(s)Toxic Organic Pollutants Impact
ResumoJournal of Environmental QualityVolume 33, Issue 1 p. 80-88 Bioremediation and Biodegradation Sequential Supercritical Fluid Extraction (SSFE) for Estimating the Availability of High Molecular Weight Polycyclic Aromatic Hydrocarbons in Historically Polluted Soils Oliver H. J. Szolar, Oliver H. J. Szolar Department of Environmental Biotechnology, Institute for Agrobiotechnology, Konrad Lorenz Strasse 20, 3430 Tulln, AustriaSearch for more papers by this authorHelmut Rost, Helmut Rost Department of Environmental Biotechnology, Institute for Agrobiotechnology, Konrad Lorenz Strasse 20, 3430 Tulln, AustriaSearch for more papers by this authorDoris Hirmann, Doris Hirmann Department of Environmental Biotechnology, Institute for Agrobiotechnology, Konrad Lorenz Strasse 20, 3430 Tulln, AustriaSearch for more papers by this authorMarion Hasinger, Marion Hasinger Department of Environmental Biotechnology, Institute for Agrobiotechnology, Konrad Lorenz Strasse 20, 3430 Tulln, AustriaSearch for more papers by this authorRudolf Braun, Rudolf Braun Department of Environmental Biotechnology, Institute for Agrobiotechnology, Konrad Lorenz Strasse 20, 3430 Tulln, AustriaSearch for more papers by this authorAndreas P. Loibner, Corresponding Author Andreas P. Loibner [email protected] Department of Environmental Biotechnology, Institute for Agrobiotechnology, Konrad Lorenz Strasse 20, 3430 Tulln, AustriaCorresponding author ([email protected]).Search for more papers by this author Oliver H. J. Szolar, Oliver H. J. Szolar Department of Environmental Biotechnology, Institute for Agrobiotechnology, Konrad Lorenz Strasse 20, 3430 Tulln, AustriaSearch for more papers by this authorHelmut Rost, Helmut Rost Department of Environmental Biotechnology, Institute for Agrobiotechnology, Konrad Lorenz Strasse 20, 3430 Tulln, AustriaSearch for more papers by this authorDoris Hirmann, Doris Hirmann Department of Environmental Biotechnology, Institute for Agrobiotechnology, Konrad Lorenz Strasse 20, 3430 Tulln, AustriaSearch for more papers by this authorMarion Hasinger, Marion Hasinger Department of Environmental Biotechnology, Institute for Agrobiotechnology, Konrad Lorenz Strasse 20, 3430 Tulln, AustriaSearch for more papers by this authorRudolf Braun, Rudolf Braun Department of Environmental Biotechnology, Institute for Agrobiotechnology, Konrad Lorenz Strasse 20, 3430 Tulln, AustriaSearch for more papers by this authorAndreas P. Loibner, Corresponding Author Andreas P. Loibner [email protected] Department of Environmental Biotechnology, Institute for Agrobiotechnology, Konrad Lorenz Strasse 20, 3430 Tulln, AustriaCorresponding author ([email protected]).Search for more papers by this author First published: 01 January 2004 https://doi.org/10.2134/jeq2004.8000Citations: 16Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat ABSTRACT Sequential supercritical fluid (CO2) extraction (SSFE) was applied to eight historically contaminated soils from diverse sources with the aim to elucidate the sorption–desorption behavior of high molecular weight polycyclic aromatic hydrocarbons (PAHs). The method involved five extraction phases applying successively harsher conditions by increasing fluid temperature and density mobilizing target compounds from different soil particle sites. Two groups of soils were identified based on readily desorbing (available) PAH fractions obtained under mildest extraction conditions (e.g., readily desorbing fractions of fluoranthene and pyrene significantly varied between the soils ranging from 90%). Moreover, extraction behavior strongly correlated with molecular weight revealing decreasing available PAH fractions with increasing weight. Physicochemical soil parameters such as particle size distribution and organic dry mass were found to have no distinct effect on the sorption–desorption behavior of PAHs in the different soils. However, PAH profiles significantly correlated with readily available pollutant fractions; soils with relatively less mobile PAHs had higher proportions of five- and six-ring PAHs and vice versa. Eventually, biodegradability corresponded well with PAH recoveries under the two mildest extraction phases. However, a quantitative relationship was only established for soils with biodegradable PAHs. Out of eight soils, five showed no biodegradation including the four soils with the lowest fraction of readily desorbing PAHs. Only one soil (which was found to be highly toxic to Vibrio fischeri) did not match the overall pattern showing no PAH biodegradability but large fractions of highly mobile PAHs, concluding that mass transfer limitations may only be one of many factors governing biodegradability of PAHs. References Agency for Toxic Substances and Disease Registry. 2001. Top 20 hazardous substances from the CERCLA Priority List of Hazardous Substances for 2001 [Online]. Available at http://www.atsdr.cdc.gov/cxcx3.html (verified 25 Aug. 2003). ATSDR, Div. of Toxicol., Atlanta. Alexander, M. Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ. Sci. Technol. 2000 34 4259–4265. https://doi.org/10.1021/es001069+, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000089970000001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Baldrian, P. Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl. Environ. Microbiol. 2000 66 2471–2478. https://doi.org/10.1128/AEM.66.6.2471-2478.2000, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000087358700027&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Björklund, E. Determining PCB sorption/desorption behavior on sediments using selective supercritical fluid extraction. 1. Desorption from historically contaminated samples. Environ. Sci. Technol. 1999 33 2193–2203. https://doi.org/10.1021/es981071p, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000081286300032&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Björklund, E. Introducing selective supercritical fluid extraction as a new tool for determining sorption/desorption behavior and bioavailability of persistent organic pollutants in sediment. J. Biochem. Biophys. Methods 2000 43 295–311. https://doi.org/10.1016/S0165-022X(00)00050-6, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000088158400021&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Bosma, T.N.P. Mass transfer limitation of biotransformation: Quantifying bioavailability. Environ. Sci. Technol. 1997 31 248–252. https://doi.org/10.1021/es960383u, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997WC40000054&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Breedveld, G.D. Estimating the availability of polycyclic aromatic hydrocarbons for bioremediation of creosote contaminated soils. Appl. Microbiol. Biotechnol. 2000 54 255–261. https://doi.org/10.1007/s002530000362, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000088874500018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Brusseau, M.L. Influence of sorbate structure on nonequilibrium sorption of organic compounds. Environ. Sci. Technol. 1991 25 1501–1506. https://doi.org/10.1021/es00020a022, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1991FY99800028&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Cornelissen, G. Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation. Environ. Sci. Technol. 1998 32 966–970. https://doi.org/10.1021/es9704038, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000072837300035&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Cuypers, C. Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments. Environ. Sci. Technol. 2000 34 2057–2063. https://doi.org/10.1021/es991132z, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000087071900028&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Cuypers, C. The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-β-cyclodextrin and Triton X-100 extraction techniques. Chemosphere 2002 46 1235–1245. https://doi.org/10.1016/S0045-6535(01)00199-0, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000174632800012&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Dean-Ross, D. Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiol. Ecol. 2002 41 1–7. https://doi.org/10.1111/j.1574-6941.2002.tb00960.x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000176749500001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Deutsches Institut für Normung. 1988. DIN 38406-E22. Determination of 33 elements by inductively coupled plasma emission spectrometry (ICP-OES). German standard methods for the estimation of water, wastewater and sludges; cations (Group E). Beuth Press, Berlin. Edwards, N.T. Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment-A review. J. Environ. Qual. 1983 12 427–441. https://doi.org/10.2134/jeq1983.124427x, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1983RP51800001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Hawthorne, S.B. Correlating selective supercritical fluid extraction with bioremediation behavior of PAHs in a field treatment plot. Environ. Sci. Technol. 2000 34 4103–4110. https://doi.org/10.1021/es001178o, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000089604500024&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Hund, K. Ecotox-evaluation strategy for soil bioremediation exemplified for a PAH-contaminated site. Chemosphere 1994 29 371–390. https://doi.org/10.1016/0045-6535(94)90111-2, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994PD23300014&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Karickhoff, S.W. Sorption of hydrophobic pollutants on natural sediments. Water Res. 1979 13 241–248. https://doi.org/10.1016/0043-1354(79)90201-X, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1979GM78200004&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Kelsey, J.W. Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ. Sci. Technol. 1997 31 214–217. https://doi.org/10.1021/es960354j, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997WC40000050&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Krauss, M. Sorption strength of persistent organic pollutants in particle-size fractions of urban soils. Soil Sci. Soc. Am. J. 2002 66 430–437. https://doi.org/10.2136/sssaj2002.0430, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000174275000013&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Leppänen, M.T. Effects of sediment-chemical contact time on availability of sediment-associated pyrene and benzo(a)pyrene to oligochaete worms and semipermeable membrane devices. Aquat. Toxicol. 2000 49 227–241. https://doi.org/10.1016/S0166-445X(99)00085-5, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000087664700001&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Liste, H.H. Butanol extraction to predict bioavailability of PAHs in soil. Chemosphere 2002 46 1011–1017. https://doi.org/10.1016/S0045-6535(01)00165-5, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000174191500007&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Loibner, A.P., M. Gartner, M. Schlegl, I. Hautzenberger, and R. Braun. 1997. PAHs: Rapid estimation of their bioavailability in soil. p. 617–622. In B.C. Alleman and and A. Leeson (ed.) In situ and on-site bioremediation. Vol. 5. Batelle Press, Columbus, OH. Loibner, A.P. The use of sequential supercritical fluid extraction for bioavailability investigations of PAH in soil. Bodenkultur 2000 51 279–287 Loibner, A.P., O. Szolar, M. Schlegl, M. Gartner, and R. Braun. 1998. Bioavailability of PAHs in soil and ecotoxicological considerations. p. 797–799. In Contaminated soil '98. Vol. 2. Thomas Telford, London. Luthy, R.G. Sequestration of hydrophobic organic contaminants by geosorbents. Environ. Sci. Technol. 1997 31 3341–3347. https://doi.org/10.1021/es970512m, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997YJ88200024&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 MacRae, J.D. Comparison of methods used to determine the availability of polycyclic aromatic hydrocarbons in marine sediment. Environ. Sci. Technol. 1998 32 3809–3815. https://doi.org/10.1021/es980165w, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000077282500043&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Morrison, D.E. Bioavailability to earthworms of aged DDT, DDE, DDD, and dieldrin in soil. Environ. Sci. Technol. 2000 34 709–713. https://doi.org/10.1021/es9909879, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000085352300027&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Nilsson, T. Development of a simple selective SFE method for the determination of desorption behaviour of PCBs in two Swedish sediments. Chemosphere 2002 46 469–476. https://doi.org/10.1016/S0045-6535(01)00119-9, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000173519800011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Österreichisches Normungsinstitut. 1988. Physical investigations of soil; determination of grain size distribution of soils less than 2 mm particle size. L 1061. Österreichisches Normungsinstitut, Wien, Austria. Pignatello, J.J. Mechanisms of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol. 1996 30 1–11. https://doi.org/10.1021/es940683g, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996TN49700024&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Pilorz, K. Determining PCB sorption/desorption behavior on sediments using selective supercritical fluid extraction. 2. Describing PCB extraction with simple diffusion models. Environ. Sci. Technol. 1999 33 2204–2212. https://doi.org/10.1021/es981075u, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000081286300033&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Reid, B.J. Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environ. Sci. Technol. 2000 34 3174–3179. https://doi.org/10.1021/es990946c, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000088561100033&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Scow, K.M. Biodegradation of sorbed chemicals in soil. Environ. Health Perspect. 1995 103 93–95. https://doi.org/10.2307/3432355, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000202841000022&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Shaw, G.R. Prediction and monitoring of the carcinogenicity of polycyclic aromatic compounds (PACs). Rev. Environ. Contam. Toxicol. 1994 135 1–62 Shuttleworth, K.L. Environmental aspects of PAH biodegradation. Appl. Biochem. Biotechnol. 1995 54 291–302. https://doi.org/10.1007/BF02787927, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1995RY91100021&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Smreczak, B., B. Maliszewska-Kordybach, and S. Martyniuk. 1999. Effect of PAHs and heavy metals on activity of soil microflora. p. 377–380. In J.C. Block, V.V. Goncharuk, and and P. Baveye (ed.) Bioavailability of organic xenobiotics in the environment. NATO ASI Ser. Vol. 64. Kluwer Academic Publ., Dordrecht, the Netherlands. Szolar, O.H.J. Analysis of polycyclic aromatic hydrocarbons in soil: Minimizing sample pretreatment using automated Soxhlet with ethyl acetate as extraction solvent. Anal. Chem. 2002 74 2379–2385. https://doi.org/10.1021/ac015739l, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000175662100019&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Tang, J. Chemical assays of availability to earthworms of polycyclic aromatic hydrocarbons in soil. Chemosphere 2002 48 35–42. https://doi.org/10.1016/S0045-6535(02)00046-2, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000176576200005&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Tang, X. Chemical-extraction methods to estimate bioavailability of DDT, DDE, and DDD in soil. Environ. Sci. Technol. 1999 33 4346–4351. https://doi.org/10.1021/es990581w, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000084024200048&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Weber, W.J. A distributed reactivity model for sorption by soils and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions. Environ. Sci. Technol. 1996 30 881–888. https://doi.org/10.1021/es950329y, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996TX75100042&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Weber, W.J. A distributed reactivity model for sorption by soils and sediments. 6. Mechanistic implications of desorption under supercritical fluid conditions. Environ. Sci. Technol. 1997 31 1686–1691. https://doi.org/10.1021/es9605681, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997XB62000034&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Weissenfels, W.D. Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: Influence on biodegradability and biotoxicity. Appl. Microbiol. Biotechnol. 1992 36 689–696. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1992HD95800022&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Young, T.M. A distributed reactivity model for sorption by soils and sediments. 7. Enthalpy and polarity effects on desorption under supercritical fluid conditions. Environ. Sci. Technol. 1997 31 1692–1696. https://doi.org/10.1021/es960569t, http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1997XB62000035&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Citing Literature Volume33, Issue1January 2004Pages 80-88 ReferencesRelatedInformation
Referência(s)