Artigo Revisado por pares

The virtual physiological human: computer simulation for integrative biomedicine II

2010; Royal Society; Volume: 368; Issue: 1921 Linguagem: Inglês

10.1098/rsta.2010.0098

ISSN

1471-2962

Autores

Peter Köhl, Marco Viceconti,

Tópico(s)

Wireless Body Area Networks

Resumo

You have accessMoreSectionsView PDF ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InRedditEmail Cite this article Kohl Peter and Viceconti Marco 2010The virtual physiological human: computer simulation for integrative biomedicine IIPhil. Trans. R. Soc. A.3682837–2839http://doi.org/10.1098/rsta.2010.0098SectionYou have accessIntroductionThe virtual physiological human: computer simulation for integrative biomedicine II Peter Kohl Peter Kohl Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK [email protected] Google Scholar Find this author on PubMed Search for more papers by this author and Marco Viceconti Marco Viceconti Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Bologna, Italy Google Scholar Find this author on PubMed Search for more papers by this author Peter Kohl Peter Kohl Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK [email protected] Google Scholar Find this author on PubMed and Marco Viceconti Marco Viceconti Laboratorio di Tecnologia Medica, Istituto Ortopedico Rizzoli, Bologna, Italy Google Scholar Find this author on PubMed Published:28 June 2010https://doi.org/10.1098/rsta.2010.0098This second Theme Issue of 'The virtual physiological human: computer simulation for integrative biomedicine' continues to explore in detail the potential of the virtual physiological human (VPH) approach (Fenner et al. 2008). The initial editorial communication on the VPH training challenges (Lawford et al. 2010) illustrates some of the tasks and solutions for an integrated (across Europe) approach towards a key requirement for sustainability of VPH efforts: the training of current and future 'specialists' in what could be regarded as a 'generalist' research direction. 'Squaring this circle' will continue to remain a core challenge for the VPH. A second editorial communication highlights the roles that new digital libraries will have to play in the context of VPH research and development (Testi et al. 2010).The remaining 10 papers address a range of organ system-specific examples, as well as cross-cutting issues of relevance for integrative study. Biomathematical modelling examples range from transport in the gastrointestinal tract (Wang et al. 2010) to patient-specific modelling of medical interventions for the respiratory system (Pérez del Palomar et al. 2010), and from blood cell distribution (Obrist et al. 2010) and tissue remodelling in the vasculature (Boyle et al. 2010) to the prediction of angiogenesis (Das et al. 2010) and of consequences when vessel wall mechanics 'go wrong' (Villa-Uriol et al. 2010). As has been a hallmark of previous Theme Issues, cardiac modelling remains a strong contributor to the VPH initiative. Papers in this Theme Issue range from the development of novel models of individual ion channel function in cardiac myocytes (Murakami et al. 2010) to the identification of biomarkers to aid early identification of cardiac side-effects associated with pharmacological interventions (Corrias et al. 2010), and to patient-specific medical device interventions (Capelli et al. 2010). Of major 'cross-cutting' relevance, in this context, are access and (re-)use of data and related models (Gianni et al. 2010).We are looking forward to the continuation of VPH-related publications by the Royal Society, to keep track of achievements and limitations in this field, over the years (Kohl et al. 2000; Hunter et al.2001, 2010; Gavaghan et al. 2006; Fenner et al. 2008). A new development may further broaden the scope of this beneficial interrelation. The Royal Society will be launching a new journal, the Journal of the Royal Society Interface, with the aim of publishing cross-disciplinary articles that range from 'traditional' subjects such as biology, chemistry, physics or mathematics to modern disciplines such as engineering and materials science, all the way through to medicine. It highlights how 'physical sciences' benefit biomedical research, and—in turn—how discoveries in the life sciences further advance technology and applications elsewhere. Today, we thank the Philosophical Transactions of the Royal Society A—the longest running scientific journal in the world—for its support of this novel scientific field.AcknowledgementsWe thank Martina Contin for expert editorial support, and all regional, national and international funding bodies that recognize the value of biomedical integrative research and support it. Special recognition is due to the European Commission in general, and the 'ICT for Health' unit of the DG-INFSO in particular, which have made VPH research and development a core target of the present 7th Framework Programme.FootnotesOne contribution of 13 to a Theme Issue 'The virtual physiological human: computer simulation for integrative biomedicine II'.© 2010 The Royal SocietyReferencesBoyle C. J., Lennon A. B., Early M., Kelly D. J., Lally C.& Prendergast P. J.. 2010Computational simulation methodologies for mechanobiological modelling: a cell-centred approach to neointima development in stents. Phil. Trans. R. Soc. A 368, 2919-2935(doi:10.1098/rsta.2010.0071). Link, ISI, Google ScholarCapelli C., Taylor A. M., Migliavacca F., Bonhoeffer P.& Schievano S.. 2010Patient-specific reconstructed anatomies and computer simulations are fundamental for selecting medical device treatment: application to a new percutaneous pulmonary valve. Phil. Trans. R. Soc. A 368, 3027-3038(doi:10.1098/rsta.2010.0088). Link, ISI, Google ScholarCorrias A., Jie X., Romero L., Bishop M. J., Bernabeu M., Pueyo E.& Rodriguez B.. 2010Arrhythmic risk biomarkers for the assessment of drug cardiotoxicity: from experiments to computer simulations. Phil. Trans. R. Soc. A 368, 3001-3025(doi:10.1098/rsta.2010.0083). Link, ISI, Google ScholarDas A., Lauffenburger D., Asada H.& Kamm R. D.. 2010A hybrid continuum–discrete modelling approach to predict and control angiogenesis: analysis of combinatorial growth factor and matrix effects on vessel-sprouting morphology. Phil. Trans. R. Soc. A 368, 2937-2960(doi:10.1098/rsta.2010.0085). Link, ISI, Google ScholarFenner J. W., et al.2008The EuroPhysiome, STEP and a roadmap for the virtual physiological human. Phil. Trans. R. Soc. A 366, 2979-2999(doi:10.1098/rsta.2008.0089). Link, ISI, Google ScholarGavaghan D., Garny A., Maini P.& Kohl P.. 2006Mathematical models in physiology. Phil. Trans. R. Soc. A 364, 1099-1106(doi:10.1098/rsta.2006.1757). Link, ISI, Google ScholarGianni D., McKeever S., Yu T., Britten R., Delingette H., Frangi A., Hunter P.& Smith N.. 2010Sharing and reusing cardiovascular anatomical models over the Web: a step towards the implementation of the virtual physiological human project. Phil. Trans. R. Soc. A 368, 3039-3056(doi:10.1098/rsta.2010.0025). Link, ISI, Google ScholarHunter P. J., Kohl P.& Noble D.. 2001Integrative models of the heart: achievements and limitations. Phil. Trans. R. Soc. A 359, 1049-1054(doi:10.1098/rsta.2001.0816). Link, ISI, Google ScholarHunter P., et al.2010A vision and strategy for the virtual physiological human in 2010 and beyond. Phil. Trans. R. Soc. A 368, 2595-2614(doi:10.1098/rsta.2010.0048). Link, ISI, Google ScholarKohl P.. 2000Computational modelling of biological systems: tools and visions. Phil. Trans. R. Soc. A 358, 579-610(doi:10.1098/rsta.2000.0547). Link, ISI, Google ScholarLawford P. V., et al.2010Virtual physiological human: training challenges. Phil. Trans. R. Soc. A 368, 2841-2851(doi:10.1098/rsta.2010.0082). Link, ISI, Google ScholarMurakami S., Suzuki S., Ishii M., Inanobe A.& Kuraci Y.. 2010Cellular modelling: experiments and simulation to develop a physiological model of G-protein control of muscarinic K+ channels in mammalian atrial cells. Phil. Trans. R. Soc. A 368, 2983-3000(doi:10.1098/rsta.2010.0093). Link, ISI, Google ScholarObrist D., Weber B., Buck A.& Jenny P.. 2010Red blood cell distribution in simplified capillary networks. Phil. Trans. R. Soc. A 368, 2897-2918(doi:10.1098/rsta.2010.0045). Link, ISI, Google ScholarPérez del Palomar A., Trabelsi O., Mena A., López-Villalobos J. L., Ginel A.& Doblaré M.. 2010Patient-specific models of human trachea to predict mechanical consequences of endoprosthesis implantation. Phil. Trans. R. Soc. A 368, 2881-2896(doi:10.1098/rsta.2010.0092). Link, ISI, Google ScholarTesti D., Quadrani P.& Viceconti M.. 2010PhysiomeSpace: digital library service for biomedical data. Phil. Trans. R. Soc. A 368, 2853-2861(doi:10.1098/rsta.2010.0023). Link, ISI, Google ScholarVilla-Uriol M. C., et al.2010Toward integrated management of cerebral aneurysms. Phil. Trans. R. Soc. A 368, 2961-2982(doi:10.1098/rsta.2010.0095). Link, ISI, Google ScholarWang Y., Brasseur J. G., Banco G. G., Webb A. G., Aliani A. C.& Neuberger T.. 2010A multiscale lattice Boltzmann model of macro- to micro-scale transport, with applications to gut function. Phil. Trans. R. Soc. A 368, 2863-2880(doi:10.1098/rsta.2010.0090). Link, ISI, Google Scholar Next Article VIEW FULL TEXT DOWNLOAD PDF FiguresRelatedReferencesDetailsCited byHoekstra A, Chopard B, Coster D, Portegies Zwart S and Coveney P (2019) Multiscale computing for science and engineering in the era of exascale performance, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377:2142, Online publication date: 8-Apr-2019.Hoekstra A, van Bavel E, Siebes M, Gijsen F and Geris L (2017) Virtual physiological human 2016: translating the virtual physiological human to the clinic, Interface Focus, 8:1, Online publication date: 6-Feb-2018. Alowayyed S, Groen D, Coveney P and Hoekstra A (2017) Multiscale computing in the exascale era, Journal of Computational Science, 10.1016/j.jocs.2017.07.004, 22, (15-25), Online publication date: 1-Sep-2017. Tartarini D, Duan K, Gruel N, Testi D, Walker D and Viceconti M (2014) The VPH Hypermodelling framework for cancer multiscale models in the clinical practice 2014 6th International Advanced Research Workshop on "In Silico Oncology and Cancer Investigation", 10.1109/IARWISOCI.2014.7034642, 978-1-4799-9885-2, (1-4) Tøndel K and Martens H (2014) Analyzing complex mathematical model behavior by partial least squares regression‐based multivariate metamodeling, WIREs Computational Statistics, 10.1002/wics.1325, 6:6, (440-475), Online publication date: 1-Nov-2014. Hunter P, Chapman T, Coveney P, de Bono B, Diaz V, Fenner J, Frangi A, Harris P, Hose R, Kohl P, Lawford P, McCormack K, Mendes M, Omholt S, Quarteroni A, Shublaq N, Skår J, Stroetmann K, Tegner J, Thomas S, Tollis I, Tsamardinos I, van Beek J and Viceconti M (2013) A vision and strategy for the virtual physiological human: 2012 update, Interface Focus, 3:2, Online publication date: 6-Apr-2013.Viceconti M (2011) A tentative taxonomy for predictive models in relation to their falsifiability, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369:1954, (4149-4161), Online publication date: 13-Nov-2011. Frangi A, Coatrieux J, Peng G, D'Argenio D, Marmarelis V and Michailova A Editorial: Special Issue on Multiscale Modeling and Analysis in Computational Biology and Medicine—Part-1, IEEE Transactions on Biomedical Engineering, 10.1109/TBME.2011.2165151, 58:10, (2936-2942) This Issue28 June 2010Volume 368Issue 1921Theme Issue 'The virtual physiological human: computer simulation for integrative biomedicine II' compiled and edited by Marco Viceconti and Peter Kohl Article InformationDOI:https://doi.org/10.1098/rsta.2010.0098Published by:Royal SocietyPrint ISSN:1364-503XOnline ISSN:1471-2962History: Published online28/06/2010Published in print28/06/2010 License:© 2010 The Royal Society Citations and impact Subjectsbiomathematicsbiomedical engineeringbiophysics

Referência(s)