Artigo Revisado por pares

Evaluation of titanium brackets for orthodontic treatment: Part II—The active configuration

2000; Elsevier BV; Volume: 118; Issue: 6 Linguagem: Inglês

10.1067/mod.2000.97818

ISSN

1097-6752

Autores

Robert P. Kusy, P W O'grady,

Tópico(s)

Dental materials and restorations

Resumo

After each archwire was ligated into a bracket with a 0.010-in stainless steel wire, both stainless steel and beta-titanium archwires (0.017- x 0.025-in) were slid through commercially pure titanium brackets (0.018-in slot size) at 34 degrees C in both the dry and wet conditions. As controls, stainless steel archwire versus stainless steel bracket couples were used with comparable dimensions. The drawing forces were measured at 5 angulations (0 degrees, 3 degrees, 7 degrees, 9 degrees, and 11 degrees ) for 5 normal forces (nominally 0.2, 0.4, 0.6, 0.8, and 1.0 kg). Regression lines were determined for each frictional couple (P <.05). In the passive configuration, the kinetic frictional coefficients of control and test couples in the dry condition were comparable to previously reported values at 0.11 +/- 0.01 for stainless steel versus stainless steel, 0.12 +/- 0.00 for stainless steel versus titanium, and 0.26 +/- 0.02 for beta-titanium versus titanium. As the angulation was increased from 0 degrees to 11 degrees and the normal force was maintained at 0.2 kg, the resistance to sliding values increased by 208 g for stainless steel versus stainless steel, by 222 g for stainless steel versus titanium, and by 185 g for beta-titanium versus titanium. When the normal force was increased to 1.0 kg, the resistance to sliding values increased to 277 g, 246 g, and 245 g, respectively. Although resistance to sliding increased with angulation and normal force, the passive layer did not breakdown. Titanium brackets remained comparable to stainless steel brackets in the active configuration.

Referência(s)