Carbon and nitrogen dynamics across a natural precipitation gradient in Patagonia, Argentina
2002; Wiley; Volume: 13; Issue: 3 Linguagem: Inglês
10.1658/1100-9233(2002)013[0351
ISSN1654-1103
AutoresAmy T. Austin, Osvaldo E. Sala,
Tópico(s)Plant Water Relations and Carbon Dynamics
ResumoJournal of Vegetation ScienceVolume 13, Issue 3 p. 351-360 Carbon and nitrogen dynamics across a natural precipitation gradient in Patagonia, Argentina Amy T. Austin, Amy T. Austin Department of Ecology and IFEVA, Faculty of Agronomy, University of Buenos Aires and CONICET, Avenida San Martín 4453, Buenos Aires, (C1417DSE) Argentina; E-mail [email protected]Search for more papers by this authorOsvaldo E. Sala, Osvaldo E. Sala Department of Ecology and IFEVA, Faculty of Agronomy, University of Buenos Aires and CONICET, Avenida San Martín 4453, Buenos Aires, (C1417DSE) Argentina; E-mail [email protected]Search for more papers by this author Amy T. Austin, Amy T. Austin Department of Ecology and IFEVA, Faculty of Agronomy, University of Buenos Aires and CONICET, Avenida San Martín 4453, Buenos Aires, (C1417DSE) Argentina; E-mail [email protected]Search for more papers by this authorOsvaldo E. Sala, Osvaldo E. Sala Department of Ecology and IFEVA, Faculty of Agronomy, University of Buenos Aires and CONICET, Avenida San Martín 4453, Buenos Aires, (C1417DSE) Argentina; E-mail [email protected]Search for more papers by this author First published: 24 February 2002 https://doi.org/10.1111/j.1654-1103.2002.tb02059.xCitations: 131AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Abstract. Both ecosystem carbon gain and nutrient availability are largely constrained by the magnitude and seasonality of precipitation in arid and semi-arid ecosystems. We investigated the role of precipitation on ecosystem processes along an International Geosphere Biosphere Programme (IGBP) transect in temperate South America. The transect consists of a contiguous precipitation gradient in the southern region of Argentinean Patagonia (44–45° S), from 100 mm to 800 mm mean annual precipitation (MAP) and vegetation ranging from desert scrub to closed canopy forest. Gravimetric soil water content tracked changes in seasonal and annual precipitation, with a linear increase in soil water content with increasing MAP. Above-ground net primary production (ANPP) increased linearly along the gradient of precipitation (ANPP =– 31.2 + 0.52 MAP, r2= 0.84, p= 0.028), supporting the relationship that carbon assimilation is largely controlled by available water in these sites, and was in general agreement with regional models of ANPP and rainfall. However, inorganic soil nitrogen was also highly linearly correlated with both MAP ([N] = 0.19 MAP – 32, r2= 0.96, p= 0.003) and ANPP (ANPP = 2.6 [Ninorganic]+59.4, r2= 0.79, p= 0.042), suggesting a direct control of precipitation on nitrogen turnover and an interaction with nitrogen availability in controlling carbon gain. The asynchrony of precipitation and changes in dominant vegetation may play important roles in determining the carbon-nitrogen interactions along this rainfall gradient. References Aber, J.D., Melillo, J.M., Nadelhoffer, K.J., Pastor, J. & Boone, R.D. 1991. Factors controlling nitrogen cycling and nitrogen saturation in northern temperate forest ecosystems. Ecol. Appl. 1: 303–315. 10.2307/1941759 PubMedWeb of Science®Google Scholar Aguiar, M.R. & Sala, O.E. 1998. Interactions among grasses, shrubs and herbivores in Patagonian grass-shrub steppes. Ecol. Austr. 8: 201–210. Google Scholar Aguiar, M.R., Paruelo, J.M., Sala, O.E. & Lauenroth, W.K. 1996. Ecosystem responses to changes in plant functional type composition: an example from the Patagonian steppe. J. Veg. Sci. 7: 381–390. 10.2307/3236281 Web of Science®Google Scholar Amundson, R.G., Chadwick, O.A. & Sowers, J.M. 1989. A comparison of soil climate and biological activity along an elevation gradient in the eastern Mojave Desert. Oecologia 80: 395–400. 10.1007/BF00379042 CASPubMedWeb of Science®Google Scholar Armesto, J.J., Casassa, I. & Dollenz, O. 1992. Age structure and dynamics of Patagonian beech forests in Torres del Paine National Park, Chile. Vegetatio 98: 13–22. 10.1007/BF00031633 Web of Science®Google Scholar Austin, A.T. 2002. Differential effects of precipitation on production and decomposition along a rainfall gradient in Hawai'i. Ecology 83: 328–338. 10.1890/0012-9658(2002)083[0328:DEOPOP]2.0.CO;2 Web of Science®Google Scholar Austin, A.T. & Vitousek, P.M. 2000. Precipitation, decomposition, and litter decomposability of Metrosideros polymorpha on Hawai'i. J. Ecol. 88: 129–138. 10.1046/j.1365-2745.2000.00437.x Web of Science®Google Scholar Bertiller, M.B. & Bisigato, A. 1998. Vegetation dynamics under grazing disturbance. The state-and-transition model for the Patagonian steppes. Ecol. Austr. 8: 191–200. Google Scholar Bertiller, M.B., Elissalde, N.O. & Rostagno, C.M. 1995. Environmental patterns in plant distribution along a precipitation gradient in western Patagonia. J. Arid Environ. 29: 85–97. 10.1016/S0140-1963(95)80066-2 Web of Science®Google Scholar Buamscha, G., Gobbi, M., Mazzarino, M.J. & Laos, F. 1998. Indicators of nitrogen conservation in Austocedrus chilensis forests along a moisture gradient in Argentina. For. Ecol. Manage. 112: 253–261. 10.1016/S0378-1127(98)00341-7 Web of Science®Google Scholar Burke, I.C., Kittel, T.G.F., Lauenroth, W.K., Snook, P., Yonker, C.M. & Parton, W.J. 1991. Regional analysis of the central Great Plains. BioScience 41: 685–692. 10.2307/1311763 Web of Science®Google Scholar Burke, I.C., Lauenroth, W.K. & Parton, W.J. 1997. Regional and temporal variation in net primary production and nitrogen mineralization in grasslands. Ecology 78: 1330–1340. 10.1890/0012-9658(1997)078[1330:RATVIN]2.0.CO;2 Web of Science®Google Scholar Burns, B.R. 1993. Fire-induced dynamics of Araucaria araucana-Nothofagus antarctica forest in the southern Andes. J. Biogeogr. 20: 669–685. 10.2307/2845522 Web of Science®Google Scholar Chadwick, O.A., Derry, L.A., Vitousek, P.M., Huebert, B.J. & Hedin, L.O. 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397: 491–497. 10.1038/17276 CASWeb of Science®Google Scholar Correa, M.N. 1971. Flora Patagonica (Colleción Cientifica del INTA. Instituto Nacional de Tecnología Agropecuaria, Buenos Aires , AR . Google Scholar Dimitri, M.J. 1972. La Région de los Bosques Andino-Patagónicos Colección Cientifica del INTA. Instituto Nacional de Tecnología Agropecuaria, Buenos Aires , AR . Google Scholar Epstein, H.E., Lauenroth, W.K., Burke, I.C. & Coffin, D.P. 1996. Ecological responses of dominant grasses along two climatic gradients in the Great Plains of the United States. J. Veg. Sci. 7: 777–788. 10.2307/3236456 Web of Science®Google Scholar Fernández, R.J., Sala, O.E. & Golluscio, R.A. 1991. Woody and herbaceous aboveground production of a Patagonian steppe. J. Range Manage. 44: 434–437. 10.2307/4002739 Web of Science®Google Scholar Gorham, E., Vitousek, P.M. & Reiners, W.A. 1979. The regulation of chemical budgets over the course of terrestrial ecosystem succession. Annu. Rev. Ecol. Syst. 10: 53–84. 10.1146/annurev.es.10.110179.000413 CASWeb of Science®Google Scholar Hebert, M.T. & Jack, S.B. 1998. Leaf area index and site water balance of loblolly pine (Pinus taeda L.) across a precipitation gradient in East Texas. For. Ecol. Manage. 105: 273–282. 10.1016/S0378-1127(97)00287-9 Web of Science®Google Scholar Hedin, L.O., Armesto, J.J. & Johnson, A.H. 1995. Patterns of nutrient loss from unpolluted, old-growth temperate forests: evaluation of biogeochemical theory. Ecology 76: 492–509. 10.2307/1941208 Web of Science®Google Scholar Holland, E.A., Dentener, F.J., Braswell, B.H. & Sulman, J.M. 1999. Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry 46: 7–43. 10.1007/BF01007572 CASWeb of Science®Google Scholar Jenny, H. 1980. The soil resource (Ecological Studies 37). Springer, New York , NY . 10.1007/978-1-4612-6112-4 Google Scholar Jobbágy, E.G. & Sala, O.E. 2000. Controls on grass and shrub aboveground production in the Patagonian steppe. Ecol. Appl. 10: 541–549. 10.1890/1051-0761(2000)010[0541:COGASA]2.0.CO;2 Web of Science®Google Scholar Jobbágy, E.G., Paruelo, J.M. & León, R.J.C. 1995. Estimación del régimen de precipitación a partir de la distancia a la cordillera en el noroeste de la Patagonia. Ecol. Austr. 5: 47–53. Google Scholar Knapp, A.K. & Smith, M.D. 2001. Variation among biomes in temporal dynamics of aboveground primary production. Science 291: 481–484. 10.1126/science.291.5503.481 CASPubMedWeb of Science®Google Scholar Koch, G.W., Vitousek, P.M., Steffen, W.L. & Walker, B.H. 1995. Terrestrial transects for global change research. Vegetatio 121: 53–65. 10.1007/BF00044672 Web of Science®Google Scholar León, R.J.C., Bran, D., Collantes, M., Paruelo, J.M. & Soriano, A. 1998. Grandes unidades de vegetación de la Patagonia extra andina. Ecol. Austr. 8: 125–144. Google Scholar Lieth, H. 1975. Modeling the primary productivity of the world. In: H. Lieth & R.H. Whittaker (ed.) Primary productivity of the biosphere, pp. 237–263. Springer-Verlag, Berlin , DE . 10.1007/978-3-642-80913-2_12 Google Scholar Likens, G.E. & Bormann, F.H. 1995. Biogeochemistry of a forested ecosystem. Springer-Verlag, Berlin , DE . 10.1007/978-1-4612-4232-1 Google Scholar Meentemeyer, V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology 59: 465–472. 10.2307/1936576 CASWeb of Science®Google Scholar Noy-Meir, I. 1973. Desert ecosystems: environment and producers. Annu. Rev. Ecol. Syst. 4: 25–52. 10.1146/annurev.es.04.110173.000325 Google Scholar Noy-Meir, I. 197980. Structure and function of desert ecosystems. Isr. J. Bot. 28: 1–19. Google Scholar Pastor, J. & Post, W.M. 1986. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry 2: 3–27. 10.1007/BF02186962 Web of Science®Google Scholar Paul, E.A. & Clark, F.E. 1996. Soil microbiology and biochemistry. Academic Press, San Diego , CA . Google Scholar Perakais, S. & Hedin, L.O. 2002. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 415: 416–419. 10.1038/415416a PubMedWeb of Science®Google Scholar Prohaska, F. 1976. The climate of Argentina, Paraguay, and Uruguay. In: E. Schwerdtfeger (ed.) Climate of Central and South America, pp. 57–69. Elsevier, Amsterdam , NL . Google Scholar Raich, J.W., Russell, A.E. & Vitousek, P.M. 1997. Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai'i. Ecology 78: 707–721. 10.1890/0012-9658(1997)078[0707:PPAEDA]2.0.CO;2 Web of Science®Google Scholar Rebertus, A.J. & Veblen, T.T. 1993. Structure and tree-fall gap dynamics of old-growth Nothofagus forests in Tierra del Fuego, Argentina. J. Veg. Sci. 4: 641–654. 10.2307/3236129 Web of Science®Google Scholar Robertson, G.P., Sollins, P., Ellis, B.G. & Lajtha, K. 1999. Exchangeable ions, pH and cation exchange capacity. In: G.P. Robertson, D.C. Coleman, C.S. Bledsoe & P. Sollins (eds.) Standard soil methods in long-term ecological research, pp. 106–114. Oxford University Press, Oxford , UK . Google Scholar Sala, O.E. & Austin, A.T. 2000. Methods of estimating aboveground net primary production. In: O.E. Sala, R.B. Jackson, H.A. Mooney & R.H. Howarth (eds.) Methods in ecosystem science, pp. 31–43. Springer, New York , NY . 10.1007/978-1-4612-1224-9_3 Google Scholar Sala, O.E. & Lauenroth, W.K. 1982. Small rainfall events: an ecological role in semiarid regions. Oecologia 53: 301–304. 10.1007/BF00389004 CASPubMedWeb of Science®Google Scholar Sala, O.E., Golluscio, R.A., Lauenroth, W.K. & Soriano, A. 1989. Resource partitioning between shrubs and grasses in the Patagonian steppe. Oecologia 81: 501–505. 10.1007/BF00378959 CASPubMedWeb of Science®Google Scholar Sala, O.E., Parton, W.J., Joyce, L.A. & Lauenroth, W.K. 1988. Primary production of the central grassland region of the United States. Ecology 69: 40–45. 10.2307/1943158 Web of Science®Google Scholar Schulze, E.D., Mooney, H.A., Sala, O.E., Jobbágy, E., Buchmann, N., Bauer, G., Canadell, J., Jackson, R.B., Loreti, J., Oesterheld, M. & Ehleringer, J.R. 1996. Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia 108: 503–511. 10.1007/BF00333727 PubMedWeb of Science®Google Scholar Soriano, A. 1956. Los distritos florísticos de la Provincia Patagónica. Rev. Invest. Agríc. 10: 323–349. Google Scholar Soriano, A. & Sala, O.E. 1983. Ecological strategies in a Patagonian arid steppe. Vegetatio 56: 9–15. 10.1007/BF00036131 Web of Science®Google Scholar Strahler, A.N. & Strahler, A.H. 1983. Modern Physical Geography. Wiley, New York , NY . Google Scholar Veblen, T.T. & Markgraf, V. 1988. Steppe expansion in Patagonia Quat. Res. 30: 331–338. 10.1016/0033-5894(88)90008-7 Web of Science®Google Scholar Veblen, T., Kitzberger, T. & Lara, A. 1992. Disturbance and forest dynamics along a transect from Andean rain forest to Patagonian shrubland. J. Veg. Sci. 3: 507–520. 10.2307/3235807 Web of Science®Google Scholar Veblen, T.T., Donoso, C., Kitzberger, T. & Rebertus, A.J. 1996. Ecology of southern Chilean and Argentinean Nothofagus forests. In: T.T. Veblen, R.S. Hill & J. Read (eds.) The ecology and biogeography of Nothofagus forests, pp. 293–353. Yale Univ. Press, New Haven , CT . Google Scholar Vitousek, P.M. & Matson, P.A. 1991. Gradient analysis of ecosystems. In: J. Cole, G. Lovett & S. Findlay (ed.) Comparative analyses of ecosystems: patterns, mechanisms and theories, pp. 287–298. Springer, New York , NY . 10.1007/978-1-4612-3122-6_14 Web of Science®Google Scholar Vitousek, P.M. & Reiners, W.A. 1975. Ecosystem succession and nutrient retention: a hypothesis. BioScience 25: 376–381. 10.2307/1297148 CASWeb of Science®Google Scholar Walter, H. 1994. Vegetation of the earth and the ecological systems of the geo-biosphere. Springer-Verlag, Berlin , DE . Google Scholar Walter, H. & Box, E.O. 1983. Climate of Patagonia. In: N.E. West (ed.) Deserts and Semideserts of Patagonia. Temperate deserts and semideserts. pp. 432–435. Elsevier, Amsterdam , NL . Web of Science®Google Scholar Whittaker, R.H. & Marks, P.L. 1975. Methods of assessing terrestrial productivity. In: H. Lieth & R.H. Whittaker (ed.) Primary productivity of the biosphere, pp. 55–118. Springer, New York , NY . 10.1007/978-3-642-80913-2_4 Google Scholar Citing Literature Volume13, Issue3June 2002Pages 351-360 ReferencesRelatedInformation
Referência(s)