Solvent effects on the catalytic activity of subtilisin suspended in compressed gases
1996; Wiley; Volume: 49; Issue: 4 Linguagem: Inglês
10.1002/(sici)1097-0290(19960220)49
ISSN1097-0290
AutoresInês Borges de Carvalho, Teresa Corrêa de Sampaio, Susana Barreiros,
Tópico(s)Biofuel production and bioconversion
ResumoBiotechnology and BioengineeringVolume 49, Issue 4 p. 399-404 Article Solvent effects on the catalytic activity of subtilisin suspended in compressed gases Inês Borges de Carvalho, Inês Borges de Carvalho Instituto de Tecnológia Química e Biológica, Universidade Nova de Lisboa, R. da Quinta Grande, 6, Apt. 127, 2780 Oeiras, PortugalSearch for more papers by this authorTeresa Corrêa de Sampaio, Teresa Corrêa de Sampaio Instituto de Tecnológia Química e Biológica, Universidade Nova de Lisboa, R. da Quinta Grande, 6, Apt. 127, 2780 Oeiras, PortugalSearch for more papers by this authorSusana Barreiros, Corresponding Author Susana Barreiros Instituto de Tecnológia Química e Biológica, Universidade Nova de Lisboa, R. da Quinta Grande, 6, Apt. 127, 2780 Oeiras, PortugalInstituto de Tecnológia Química e Biológica, Universidade Nova de Lisboa, R. da Quinta Grande, 6, Apt. 127, 2780 Oeiras, PortugalSearch for more papers by this author Inês Borges de Carvalho, Inês Borges de Carvalho Instituto de Tecnológia Química e Biológica, Universidade Nova de Lisboa, R. da Quinta Grande, 6, Apt. 127, 2780 Oeiras, PortugalSearch for more papers by this authorTeresa Corrêa de Sampaio, Teresa Corrêa de Sampaio Instituto de Tecnológia Química e Biológica, Universidade Nova de Lisboa, R. da Quinta Grande, 6, Apt. 127, 2780 Oeiras, PortugalSearch for more papers by this authorSusana Barreiros, Corresponding Author Susana Barreiros Instituto de Tecnológia Química e Biológica, Universidade Nova de Lisboa, R. da Quinta Grande, 6, Apt. 127, 2780 Oeiras, PortugalInstituto de Tecnológia Química e Biológica, Universidade Nova de Lisboa, R. da Quinta Grande, 6, Apt. 127, 2780 Oeiras, PortugalSearch for more papers by this author First published: 20 February 1996 https://doi.org/10.1002/(SICI)1097-0290(19960220)49:4 3.0.CO;2-KCitations: 15AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract We studied a model transesterification reaction catalyzed by subtilisin Carlsberg suspended in carbon dioxide, propane, and mixtures of these solvents under pressure. To account for solvent effects due to differences in water partitioning between the enzyme and the bulk solvents, we measured water sorption isotherms for the enzyme in each solvent. We measured catalytic activity as a function of enzyme hydration and obtained bell-shaped curves with maxima at the same enzyme hydration (12%) in all the solvents. However, the activity maxima were different in all media, being much higher in propane than in either CO2 or the mixtures with 50 and 10% CO2. Considerations based on the solvation ability of the solvents did not offer an explanation for the differences in catalytic activity observed. Our results suggest that CO2 has a direct adverse effect on the catalytic activity of subtilisin. © 1996 John Wiley & Sons, Inc. References 1 Affleck, R., Xu, Z. F., Suzawa, V., Focht, K., Clark, D. S., Dordick, J. S. 1992. Enzymatic catalysis and dynamics in low-water environments. Proc. Natl. Acad. Sci. USA 89: 1100–1104. 10.1073/pnas.89.3.1100 CASPubMedWeb of Science®Google Scholar 2 Burke, P. A., Griffin, R. G., Klibanov, A. M. 1993. Solid-state nuclear magnetic resonance investigation of solvent dependence of tyrosyl ring motion in an enzyme. Biotechnol. Bioeng. 42: 87–94. 10.1002/bit.260420112 CASPubMedWeb of Science®Google Scholar 3 Chrastil, J. 1982. Solubility of solids and liquids in supercritical gases. J. Phys. Chem. 86: 3016–3021. 10.1021/j100212a041 CASWeb of Science®Google Scholar 4 Chulalaksananukul, W., Condoret, J.-S., Combes, D. 1993. Geranyl acetate synthesis by lipase-catalyzed transesterification in supercritical carbon dioxide. Enzyme Microb. Technol. 15: 691–698. 10.1016/0141-0229(93)90071-9 CASWeb of Science®Google Scholar 5 Corrěa de Sampaio, T., Melo, R. B., Moura, T. F., Michel, S., Barreiros, S. 1995. Solvent effects on the catalytic activity of subtilisin suspended in organic solvents to appear. Google Scholar 6 Dabulis, K., Klibanov, A. M. 1993. Dramatic enhancement of enzymatic activity in organic solvents by lyoprotectants. Biotechnol. Bioeng. 41: 566–571. 10.1002/bit.260410509 CASPubMedWeb of Science®Google Scholar 7 Desai, U. R., Osterhout, J. J., Klibanov, A. M. 1994. Protein structure in the lyophilized state: A hydrogen isotope exchange/NMR study with bovine pancreatic trypsin inhibitor. J. Am. Chem. Soc. 116: 9420–9422. 10.1021/ja00100a002 CASWeb of Science®Google Scholar 8 Dumont, T., Barth, D., Corbier, C., Branlant, G., Perrut, M. 1992. Enzymatic reaction kinetic: Comparison in an organic solvent and in supercritical carbon dioxide. Biotechnol. Bioeng. 39: 329–333. 10.1002/bit.260400218 CASWeb of Science®Google Scholar 9 Erickson, J. C., Schyns, P., Cooney, C. L. 1990. Effect of pressure on an enzymatic reaction in a supercritical fluid. AIChE J. 36: 299–301. 10.1002/aic.690360218 CASWeb of Science®Google Scholar 10 Goodwin, R. D., Haynes, W. M. 1982. Thermophysical properties of propane from 85 to 700 K at pressures to 70 MPa. NBS Monograph 170. Google Scholar 11 Halling, P. J. 1994. Thermodynamic predictions for biocatalysis in nonconventional media: Theory, tests and recommendations for experimental design and analysis. Enzyme Microb. Technol. 16: 178–206. 10.1016/0141-0229(94)90043-4 CASPubMedWeb of Science®Google Scholar 12 Hammond, D. A., Karel, M., Klibanov, A. M., Krukonis, V. J. 1985. Enzymatic reactions in supercritical gases. Appl. Biochem. Biotechnol. 11: 393–400. 10.1007/BF02798672 CASWeb of Science®Google Scholar 13 Janssens, R. J. J., van der Lugt, J.-P., Oostrom, W. H. M. 1992. The integration of biocatalysis and downstream processing in supercritical carbon dioxide, pp. 447–449. In: C. Balny, R. Hayashi, K. Heremans, and P. Masson, (eds.), High pressure and biotechnology, vol. 224. Colloque INSERM/John Libbey Eurotext, France. Web of Science®Google Scholar 14 Kamat, S., Barrera, J., Beckman, E. J., Russell, A. J. 1992. Biocatalytic synthesis of acrylates in organic solvents and supercritical solvents: I. Optimization of enzyme environment. Biotechnol. Bioeng. 40: 158–166. 10.1002/bit.260400122 CASPubMedWeb of Science®Google Scholar 15 Kamat, S. V., Beckman, E. J., Russell, A. J. 1993. Control of enzyme enantioselectivity with pressure changes in supercritical fluoroform. J. Am. Chem. Soc. 115: 8845–8846. 10.1021/ja00072a050 CASWeb of Science®Google Scholar 16 Kamat, S. V., Iwaskewycz, B., Beckman, E. J., Russell, A. J. 1993. Biocatalytic synthesis of acrylates in supercritical fluids: Tuning enzyme activity by changing pressure. Proc. Natl. Acad. Sci. USA 90: 2940–2944. 10.1073/pnas.90.7.2940 CASPubMedWeb of Science®Google Scholar 17 Kamat, S., Critchley, G., Beckman, E. J., Russell, A. J. 1995. Biocatalytic synthesis in organic solvents and supercritical fluids: III. Does carbon dioxide covalently modify enzymes? Biotechnol. Bioeng. 46: 610–620. 10.1002/bit.260460614 CASPubMedWeb of Science®Google Scholar 18 Khmelnitsky, Y. L., Welch, S. H., Clark, D. S., Dordick, J. S. 1994. Salts dramatically enhance activity of enzymes suspended in organic solvents. J. Am. Chem. Soc. 116: 2647–2648. 10.1021/ja00085a066 CASWeb of Science®Google Scholar 19 Knapp, H., Döring, R., Oellrich, L., Piöcker, U., Prausnitz, J. M. 1982. Vapor-liquid equilibria for mixtures of low boiling substances. Chemistry Data Series, Vol. I. Dechema, Google Scholar 20 Kobayashi, R., Katz, D. L. 1953. Vapor-liquid equilibria for binary hydrocarbon-water systems. Ind. Eng. Chem. 45: 440–451. 10.1021/ie50518a051 CASWeb of Science®Google Scholar 21 Martins, J. F., Corrěa de Sampaio, T., Borges de Carvalho, I., Barreiros, S. 1994. Lipase catalyzed esterification of glycidol in nonaqueous solvents: Solvent effects on enzymatic activity. Biotechnol Bioeng. 44: 119–124. 10.1002/bit.260440117 CASPubMedWeb of Science®Google Scholar 22 Martins, J. F., Borges de Carvalho, I., Corrěa de Sampaio, T., Barreiros, S. 1994. Lipase-catalyzed enantioselective esterification of glycidol in supercritical carbon dioxide. Enzyme Microb. Technol. 16: 785–790. 10.1016/0141-0229(94)90036-1 CASWeb of Science®Google Scholar 23 Marty, A., Chulalaksananukul, W., Willemot, R. M., Condoret, J. S. 1992. Kinetics of lipase-catalyzed esterification in supercritical CO2, Biotechnol. Bioeng. 39: 273–280. 10.1002/bit.260390304 CASPubMedWeb of Science®Google Scholar 24 Marty, A., Combes, D., Condoret, J.-S. 1994. Continuous reaction separation process for enzymatic esterification in supercritical carbon dioxide. Biotechnol. Bioeng. 43: 497–504. 10.1002/bit.260430610 CASPubMedWeb of Science®Google Scholar 25 Nakamura, K., Min Chi, Y. Yamada, Y., Yano, T. 1986. Lipase activity and stability in supercritical carbon dioxide. Chem. Eng. Commun. 45: 207–212. 10.1080/00986448608911384 CASWeb of Science®Google Scholar 26 Nakamura, K. 1990. Biochemical reactions in supercritical fluids. Trends Biotechnol. 8: 288–292. 10.1016/0167-7799(90)90200-H CASWeb of Science®Google Scholar 27 Paulaitis, M. E., Sowa, M. J., McMinn, J. H. 1992. Effect of enzyme hydration on the catalytic activity of chymotrypsin in nearly anhydrous organic suspensions. Ann. NY Acad. Sci. 672: 278–282. 10.1111/j.1749-6632.1992.tb35635.x CASWeb of Science®Google Scholar 28 Perrut, M. Enzymatic reactions in supercritical carbon dioxide, pp. 401–410. In: C. Balny, R. Hayashi, K. Heremans, and P. Masson, (eds.), High pressure and biotechnology, Vol. 224. Colloque INSERM/John Libbey Eurotext, France. Google Scholar 29 Prausnitz, J. M., Lichtenthaler, R. N., Gomes de Azevedo, E. 1986. Molecular thermodynamics of fluid-phase equilibria, 2nd edition. Prentice-Hall, New Jersey. Google Scholar 30 Randolph, T. W., Blanch, H. W., Prausnitz, J. M., Wilke, C. R. 1985. Enzymatic catalysis in a supercritical fluid. Biotechnol. Lett. 7: 325–328. 10.1007/BF01030279 CASWeb of Science®Google Scholar 31 Reamer, H. H., Sage, B. H., Lacey, W. N. 1951. Phase equilibria in hydrocarbon systems. Volumetric and phase behavior of the propane-carbon dioxide system. Ind. Eng. Chem. 43: 2515–2520. 10.1021/ie50503a035 CASWeb of Science®Google Scholar 32 Reid, R. C., Prausnitz, J. M. Poling, B. E. 1988. The properties of gases and liquids. 4th edition, McGraw-Hill, New York. Google Scholar 33 Reimann, A., Robb, D. A., Halling, P. J. 1994. Solvation of CBZ-amino acid nitrophenyl esters in organic media and the kinetics of their transesterification by subtilisin. Biotechnol. Bioeng. 43: 1081–1086. 10.1002/bit.260431111 CASPubMedWeb of Science®Google Scholar 34 Ryu, K., Dordick, J. S. 1992. How do organic solvents affect peroxidase structure and function? Biochemistry 31: 2588–2598. 10.1021/bi00124a020 CASPubMedWeb of Science®Google Scholar 35 Sievers, U. 1984. Die thermodynamishen eigenschaften von kohlendioxid. Reihe 6: Energietechnik-Wärmetechnik, Nr. 15. Fortcshritt-Berichte der VDI Zeits Verei Deútscher Ingenieure. Düsselforf. Google Scholar 36 Valivety, R. H., Halling, P. J., Macrae, A. R. 1992. Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents. Biochim. Biophys. Acta 1118: 218–222. 10.1016/0167-4838(92)90278-L CASPubMedWeb of Science®Google Scholar 37 VanEijs, A. M. M., DeJong, J. P. J., Doddema, H. J., Lindeboom, D. R. 1988. Enzymatic transesterification in supercritical carbon dioxide, pp. 933–942. In: Proceedings of the 1st symposium on supercritical fluids, Nice, Vol. 2. Google Scholar 38 Vermuë, M. H., Tramper, J., de Jong, J. P. J., Oostrom, W. H. M. 1992. Enzymic transesterification in near-critical carbon dioxide: Effect of pressure, Hildebrand solubility parameter and water content. Enzyme Microb. Technol. 14: 649–655. 10.1016/0141-0229(92)90041-L CASWeb of Science®Google Scholar 39 Wiebe, R., Gaddy, V. L. 1941. Vapor phase composition of carbon dioxide-water mixtures at various temperatures and pressures to 700 atmospheres. J. Am. Chem. Soc. 63: 475–477. 10.1021/ja01847a030 CASGoogle Scholar 40 Yang, B., Kuo, S.-J., Hariyadi, P., Parkin, K. L. 1994. Solvent suitability for lipase-mediated acyl-transfer and esterification reactions in microaqueous milieu is related to substrate and product polarities. Enzyme Microb. Technol. 16: 577–583. 10.1016/0141-0229(94)90122-8 CASWeb of Science®Google Scholar 41 Yang, Z., Robb, D. A., Halling, P. J. 1992. Variation of tyrosinase activity with solvent at a constant water activity, pp. 585–592. In: J. Tramper, M. H. Vermü, H. H. Beeftink, and U. von Stockar, (eds.), Biocatalysis in non-conventional media. Elsevier, New York. 10.1016/B978-0-444-89046-7.50085-0 Web of Science®Google Scholar 42 Yang, Z., Robb, D. A. 1994. Partition coefficients of substrates and products and solvent selection for biocatalysis under nearly anhydrous conditions. Biotechnol. Bioeng. 43: 365–370. 10.1002/bit.260430504 CASPubMedWeb of Science®Google Scholar 43 Yang, Z., Zacherl, D., Russell, A. J. 1993. PH dependence of subtilisin dispersed in organic solvents. J. Am. Chem. Soc. 115: 12251–12257. 10.1021/ja00079a003 CASWeb of Science®Google Scholar Citing Literature Volume49, Issue420 February 1996Pages 399-404 ReferencesRelatedInformation
Referência(s)