Solvent‐Dependent Enantiodivergent Mannich‐Type Reaction: Utilizing a Conformationally Flexible Guanidine/Bisthiourea Organocatalyst
2010; Wiley; Volume: 122; Issue: 48 Linguagem: Inglês
10.1002/ange.201005109
ISSN1521-3757
AutoresYoshihiro Sohtome, Shinji Tanaka, Keisuke Takada, Takahisa Yamaguchi, Kazuo Nagasawa,
Tópico(s)Chemical Synthesis and Analysis
ResumoAngewandte ChemieVolume 122, Issue 48 p. 9440-9443 Zuschrift Solvent-Dependent Enantiodivergent Mannich-Type Reaction: Utilizing a Conformationally Flexible Guanidine/Bisthiourea Organocatalyst† Dr. Yoshihiro Sohtome, Corresponding Author Dr. Yoshihiro Sohtome [email protected] Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan), Fax: (+81) 42-388-7295Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan), Fax: (+81) 42-388-7295Search for more papers by this authorShinji Tanaka, Shinji Tanaka Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan), Fax: (+81) 42-388-7295Search for more papers by this authorKeisuke Takada, Keisuke Takada Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan), Fax: (+81) 42-388-7295Search for more papers by this authorTakahisa Yamaguchi, Takahisa Yamaguchi Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan), Fax: (+81) 42-388-7295Search for more papers by this authorProf. Dr. Kazuo Nagasawa, Corresponding Author Prof. Dr. Kazuo Nagasawa [email protected] Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan), Fax: (+81) 42-388-7295Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan), Fax: (+81) 42-388-7295Search for more papers by this author Dr. Yoshihiro Sohtome, Corresponding Author Dr. Yoshihiro Sohtome [email protected] Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan), Fax: (+81) 42-388-7295Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan), Fax: (+81) 42-388-7295Search for more papers by this authorShinji Tanaka, Shinji Tanaka Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan), Fax: (+81) 42-388-7295Search for more papers by this authorKeisuke Takada, Keisuke Takada Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan), Fax: (+81) 42-388-7295Search for more papers by this authorTakahisa Yamaguchi, Takahisa Yamaguchi Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan), Fax: (+81) 42-388-7295Search for more papers by this authorProf. Dr. Kazuo Nagasawa, Corresponding Author Prof. Dr. Kazuo Nagasawa [email protected] Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan), Fax: (+81) 42-388-7295Department of Biotechnology and Life Science, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan), Fax: (+81) 42-388-7295Search for more papers by this author First published: 26 October 2010 https://doi.org/10.1002/ange.201005109Citations: 47 † We thank the Grant-in-Aid for Young Scientist (B) and The Uehara Memorial foundation. Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Beachte das Medium: Malonate und tert-Butoxycarbonyl(Boc)-geschützte Imine reagieren in Gegenwart des flexiblen Katalysators 1 je nach Lösungsmittel zu den S- oder R-Addukten. Eine kinetische Analyse dieser enantiodivergenten Organokatalyse erklärt das Verhalten mit einer Enthalpie-Entropie-Kompensation. Supporting Information Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Filename Description ange_201005109_sm_miscellaneous_information.pdf2.3 MB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1For selected recent reviews on asymmetric hydrogen-bond donor catalysis, see: Google Scholar 1aP. M. Pihko, Hydrogen Bonding in Organic Synthesis, Wiley-VCH, Weinheim, 2009; 10.1002/9783527627844 Google Scholar 1bZ. Zhang, P. R. Schreiner, Chem. Soc. Rev. 2009, 38, 1187; 10.1039/b801793j CASPubMedWeb of Science®Google Scholar 1cA. G. Doyle, E. N. Jacobsen, Chem. Rev. 2007, 107, 5713; 10.1021/cr068373r CASPubMedWeb of Science®Google Scholar 1dS. J. Connon, Chem. Eur. J. 2006, 12, 5418; 10.1002/chem.200501076 CASPubMedWeb of Science®Google Scholar 1eM. S. Taylor, E. N. Jacobsen, Angew. Chem. 2006, 118, 1550; 10.1002/ange.200503132 PubMedWeb of Science®Google ScholarAngew. Chem. Int. Ed. 2006, 45, 1520. 10.1002/anie.200503132 CASPubMedWeb of Science®Google Scholar 2For selected reviews on asymmetric organocatalysis, see: Google Scholar 2aA. Berkessel, H. Gröger, Asymmetric Organocatalysis, Wiley-VCH, Weinheim, 2005; 10.1002/3527604677 Web of Science®Google Scholar 2b Enantioselective Organocatalysis: Reaction and Experimental Procedures (Ed.: ), Wiley, New York, 2007; Google Scholar 2cD. W. C. MacMillan, Nature 2008, 455, 304. 10.1038/nature07367 CASPubMedWeb of Science®Google Scholar 3For selected recent reviews on guanidine and guanidinium organocatalysts, see: Google Scholar 3aT. Ishikawa, Superbases for Organic Syntheis, Wiley, New York, 2009; 10.1002/9780470740859 Web of Science®Google Scholar 3bD. Leow, C.-H. Tan, Chem. Asian J. 2009, 4, 488; 10.1002/asia.200800361 CASPubMedWeb of Science®Google Scholar 3cT. Ishikawa, T. Kumamoto, Synthesis 2006, 737. 10.1055/s-2006-926325 CASWeb of Science®Google Scholar 4For pioneering work utilizing chiral urea/thiourea catalysts, see: M. S. Sigman, E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 4901; for other works by Jacobsen and his co-workers, see references [1] and [2]. 10.1021/ja980139y CASWeb of Science®Google Scholar 5For original work, see: Google Scholar 5aT. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc. 2003, 125, 12672; for other work by Takemoto and co-workers, see references [4] and [5] as well as their review: 10.1021/ja036972z CASPubMedWeb of Science®Google Scholar 5bM. Miyabe, Y. Takemoto, Bull. Chem. Soc. Jpn. 2008, 81, 785. 10.1246/bcsj.81.785 CASWeb of Science®Google Scholar 6For pioneering work utilizing chiral peptide catalysts, see: Google Scholar 6aS. J. Miller, G. T. Copeland, N. Papaioannou, T. E. Horstmann, E. M. Ruel, J. Am. Chem. Soc. 1998, 120, 1629; for a recent review on peptide catalysts, see: 10.1021/ja973892k CASWeb of Science®Google Scholar 6bE. A. C. Davie, S. M. Mennen, Y. Xu, S. J. Miller, Chem. Rev. 2007, 107, 5759. 10.1021/cr068377w CASPubMedWeb of Science®Google Scholar 7For a report on guanidinium/bisthiourea organocatalysis, see: Google Scholar 7aY. Sohtome, Y. Hashimoto, K, Nagasawa, Adv. Synth. Catal. 2005, 347, 1643; for a recent review, see: 10.1002/adsc.200505148 CASWeb of Science®Google Scholar 7bY. Sohtome, K. Nagasawa, Synlett 2010, 1. CASWeb of Science®Google Scholar 8Y. Sohtome, B. Shin, N. Horitsugi, R. Takagi, K. Noguchi, K. Nagasawa, Angew. Chem. 2010, 122, 7457; 10.1002/ange.201003172 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 7299. Google Scholar 9For a review, see: Google Scholar 9aY. Inoue, N. Sugahara, T. Wada, Pure Appl. Chem. 2001, 73, 475; for work concerning on entropy-associated photochemical reactions 10.1351/pac200173030475 CASWeb of Science®Google Scholar 9bY. Inoue, T. Yokoyama, N. Yamasaki, A. Tai, Nature 1989, 341, 225. 10.1038/341225a0 CASWeb of Science®Google Scholar 10For reviews, see: Google Scholar 10aY. H. Kim, Acc. Chem. Res. 2001, 34, 955; 10.1021/ar000187z CASPubMedWeb of Science®Google Scholar 10bM. P. Sibi, M. Liu, Curr. Org. Chem. 2001, 5, 719; 10.2174/1385272013375265 CASWeb of Science®Google Scholar 10cG. Zanoni, F. Castronovo, M. Franzini, G. Vidari, E. Giannini, Chem. Soc. Rev. 2003, 32, 115; 10.1039/b201455f CASPubMedWeb of Science®Google Scholar 10dM. Hayashi, T. Tanaka, Synthesis 2008, 3361; 10.1055/s-0028-1083171 CASWeb of Science®Google Scholar 10eM. Batók, Chem. Rev. 2010, 110, 1663. 10.1021/cr9002352 CASPubMedWeb of Science®Google Scholar 11 11aS. Yamaguchi, S. H. Mosher, J. Am. Chem. Soc. 1972, 94, 9254; 10.1021/ja00781a060 CASWeb of Science®Google Scholar 11bS. Yamaguchi, S. H. Mosher, J. Org. Chem. 1973, 38, 1870. 10.1021/jo00950a020 CASWeb of Science®Google Scholar 12For a recent example, see: A. Nojiri, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc. 2009, 131, 3779 and references are cited therein. 10.1021/ja900084k CASPubMedWeb of Science®Google Scholar 13 13aP. Manzón, R. Chinchilla, C. Nájera, G. Guillena, R. Kreiter, R. J. M. K. Gebbink, G. van Koten, Tetrahedron: Asymmetry 2002, 13, 2181; 10.1016/S0957-4166(02)00611-0 Web of Science®Google Scholar 13bJ. E. Imbriglio, M. M. Vasbinder, S. J. Miller, Org. Lett. 2003, 5, 3741; 10.1021/ol035466b CASPubMedWeb of Science®Google Scholar 13cS.-H. Chen, B.-C. Hong, C.-F. Su, S. Sarshar, Tetrahedron Lett. 2005, 46, 8899; 10.1016/j.tetlet.2005.10.072 CASWeb of Science®Google Scholar 13dN. Abermi, G. Masson, J. Zhu, Org. Lett. 2009, 11, 4648; 10.1021/ol901920s CASPubMedWeb of Science®Google Scholar 13eN. Abermi, G. Masson, J. Zhu, Adv. Synth. Catal. 2010, 352, 656. 10.1002/adsc.200900900 CASWeb of Science®Google Scholar 14For enantiodivergent reactions using stoichiometric amounts of a chiral organic compound, see: Google Scholar 14aS. Arseniyadis, A. Valleix, A. Wagner, C. Mioskowski, Angew. Chem. 2004, 116, 3376; 10.1002/ange.200453956 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 3314; 10.1002/anie.200453956 CASPubMedWeb of Science®Google Scholar 14bS. Arseniyadies, P. V. Subhash, A. Valleix, S. P. Mathew, D. G. Blackmond, A. Wagner, C. Mioskowski, J. Am. Chem. Soc. 2005, 127, 6138. 10.1021/ja051302+ CASPubMedWeb of Science®Google Scholar 15For general reviews on catalytic asymmetric Mannich-type reaction, see: Google Scholar 15aA. Ting, S. E. Schaus, Eur. J. Org. Chem. 2007, 5797; 10.1002/ejoc.200700409 CASWeb of Science®Google Scholar 15bJ. M. Verkade, J. C. van Hemert, P. L. M. Quaedflieg, F. J. T. Rutjes, Chem. Soc. Rev. 2008, 37, 29. 10.1039/B713885G CASPubMedWeb of Science®Google Scholar 16For selected examples of organocatalytic asymmetric Mannich-type reactions using 1,3-dicarbonyl compounds with thiourea/tert-amine catalyst, see: Google Scholar 16aY. Yamaoka, H. Miyabe, Y. Yasui, Y. Takemoto, Synthesis 2007, 2571; with phosphoric acid: CASWeb of Science®Google Scholar 16bD, Uraguchi, M, Terada, J. Am. Chem. Soc. 2004, 126, 5356; with cinchona alkaloids: 10.1021/ja0491533 CASPubMedWeb of Science®Google Scholar 16cS. Lou, B. M. Taoka, A. Ting, S. E. Schaus, J. Am. Chem. Soc. 2005, 127, 11256; 10.1021/ja0537373 CASPubMedWeb of Science®Google Scholar 16dA. Ting, S. Lou, S. E. Schaus, Org. Lett. 2006, 8, 2003; 10.1021/ol060304b CASPubMedWeb of Science®Google Scholar 16eS. Lou, P. Dai, S. E. Schaus, J. Org. Chem. 2007, 72, 9998; 10.1021/jo701777g CASPubMedWeb of Science®Google Scholar 16fF. Fini, L. Bernardi, R. P. Herrera, D. Pettersen, A. Ricci, V. Sgarzani, Adv. Synth. Catal. 2006, 348, 2043; 10.1002/adsc.200600250 CASWeb of Science®Google Scholar 16gO. Marianacci, G. Micheletti, L. Bernardi, F. Fini, M. Fochi, D. Pettersen, V. Sgarzani, A. Ricci, Chem. Eur. J. 2007, 13, 8388; with chincona-based thiourea: 10.1002/chem.200700908 CASWeb of Science®Google Scholar 16hJ. Song, Y. Wang, L. Deng, J. Am. Chem. Soc. 2006, 128, 6048; 10.1021/ja060716f CASPubMedWeb of Science®Google Scholar 16iJ. Song, H.-W. Shih, L. Deng, Org. Lett. 2007, 9, 603; 10.1021/ol062837q CASPubMedWeb of Science®Google Scholar 16jA. L. Tillman, J. Ye, D. J. Dixon, Chem. Commun. 2006, 1191; 10.1039/b515725k CASPubMedWeb of Science®Google Scholar 16kC. M. Bode, A. Ting, S. E. Schaus, Tetrahedron 2006, 62, 11499. 10.1016/j.tet.2006.07.071 CASWeb of Science®Google Scholar 17K. Takada, S. Tanaka, K. Nagasawa, Synlett 2009, 1643. CASWeb of Science®Google Scholar 18See the Supporting Information for details. Google Scholar 19In this report, we defined the ee value of (S)-4 as plus and that of (R)-4 as minus. Google Scholar 20For selected examples of solvent-dependent enantiodivergent catalysis, see: Google Scholar 20aM. Kanai, K. Koga, K. Tomioka, J. Chem. Soc. Chem. Commun. 1993, 1248; 10.1039/c39930001248 CASWeb of Science®Google Scholar 20bK. Tani, J. Onouchi, T. Yamagata, Y. Kataoka, Chem. Lett. 1995, 955; 10.1246/cl.1995.955 CASWeb of Science®Google Scholar 20cB. M. Trost, F. D. Toste, J. Am. Chem. Soc. 1999, 121, 4545; 10.1021/ja9828713 CASWeb of Science®Google Scholar 20dY. Inoue, H. Ikeda, M. Kaneda, T. Sumimura, S. R. L. Everitt, T. Wada, J. Am. Chem. Soc. 2000, 122, 406; 10.1021/ja993542t CASWeb of Science®Google Scholar 20eJ. Zhou, M.-C. Ye, Z.-Z. Huang, Y. Tang, J. Org. Chem. 2004, 69, 1309. 10.1021/jo035552p CASPubMedWeb of Science®Google Scholar 21For a comprehensive discussion about enthalpy-entropy compensation using differential activation parameters (ΔΔH≠ and ΔΔS≠) in supramolecular complexation: M. Rekharsky, Y. Inoue, J. Am. Chem. Soc. 2000, 122, 4418. 10.1021/ja9921118 CASWeb of Science®Google Scholar 22H. Eyring, J. Chem. Phys. 1935, 3, 107. 10.1063/1.1749604 CASWeb of Science®Google Scholar 23For selected reviews concerning the temperature dependence of asymmetric transformations, see reference [8a] as well as: Google Scholar 23aG. A. Hembury, V. V. Borovkov, Y. Inoue, Chem. Rev. 2008, 108, 1; 10.1021/cr050005k CASPubMedWeb of Science®Google Scholar 23bD. Heller, H. Buschmann, Top. Catal. 1998, 5, 159; 10.1023/A:1019185532627 CASWeb of Science®Google Scholar 23cY. Inoue, Chem. Rev. 1992, 92, 741; 10.1021/cr00013a001 CASWeb of Science®Google Scholar 23dH. Buschmann, H.-D. Scharf, N. Hoffmann, P. Esser, Angew. Chem. 1991, 103, 480; 10.1002/ange.19911030505 CASGoogle ScholarAngew. Chem. Int. Ed. Engl. 1991, 30, 477. 10.1002/anie.199104771 Web of Science®Google Scholar 24For discussions about differential activation parameters (ΔΔH≠ and ΔΔS≠) in enantioselective catalysis, see: Google Scholar 24aI. Tóth, I. Guo, B. E. Hanson, Organometallics 1993, 12, 848; 10.1021/om00027a038 CASWeb of Science®Google Scholar 24bJ. Otera, K. Sakamoto, T. Tsukamoto, A. Orita, Tetrahedron Lett. 1998, 39, 3201; 10.1016/S0040-4039(98)00459-6 CASWeb of Science®Google Scholar 24cT. Nishida, A. Miyafuji, N. Y. Ito, T. Katsuki, Tetrahedron Lett. 2000, 41, 7053; 10.1016/S0040-4039(00)01210-7 CASWeb of Science®Google Scholar 24dD. Enders, E. C. Ullrich, Tetrahedron: Asymmetry 2000, 11, 3861; 10.1016/S0957-4166(00)00379-7 CASWeb of Science®Google Scholar 24eR. R. Knowles, S. Lin, E. N. Jacobsen, J. Am. Chem. Soc. 2010, 132, 5030. 10.1021/ja101256v CASPubMedWeb of Science®Google Scholar 25Plots of the differential activation parameters ΔΔH≠ and ΔΔS≠ gave rise to a reasonably straight line. In several reports, linear relationships in the enthalpy-entropy compensation plots have been used to indicate that a single electrostatic interaction mode is operative in the complexation processes. See the Supporting Information for details as well as: Google Scholar 25aJ. E. Leffler, E. Grunwald, Rates and Equilibria of Organic Reactions, Wiley, New York, 1963; for a recent example of a photochemical reaction, see: Google Scholar 25bG. Fukahara, T. Mori, Y. Inoue, J. Org. Chem. 2009, 74, 6714; and references cited therein; for an example of asymmetric reduction of α-ketoesters with chiral NADH model, see: 10.1021/jo9012628 CASPubMedWeb of Science®Google Scholar 25cR. Saito, S. Naruse, K. Takano, K. Fukuda, A. Katoh, Y. Inoue, Org. Lett. 2006, 8, 2067; for a selected example of chromatography, see: 10.1021/ol060475g CASPubMedWeb of Science®Google Scholar 25dJ. Li, P. W. Carr, J. Chromatogr. A 1994, 670, 105. 10.1016/0021-9673(94)80285-8 CASWeb of Science®Google Scholar 26See the Supporting Information for preliminary mechanistic studies. Google Scholar Citing Literature Volume122, Issue48November 22, 2010Pages 9440-9443 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation
Referência(s)