Artigo Produção Nacional Revisado por pares

CO2 and NH3 interaction with ZnO surface: An AM1 study

1998; Wiley; Volume: 70; Issue: 2 Linguagem: Inglês

10.1002/(sici)1097-461x(1998)70

ISSN

1097-461X

Autores

João B. L. Martins, E. Longo, Carlton A. Taft,

Tópico(s)

Catalytic Processes in Materials Science

Resumo

International Journal of Quantum ChemistryVolume 70, Issue 2 p. 367-374 CO2 and NH3 interaction with ZnO surface: An AM1 study João B. L. Martins, Corresponding Author João B. L. Martins Centro Brasileiro de Pesquisas Físicas, Departamento de Matéria Condensada e Física Estatística, R. Xavier Sigaud, 150, Rio de Janeiro, R.J. CEP 22290-180, BrazilCentro Brasileiro de Pesquisas Físicas, Departamento de Matéria Condensada e Física Estatística, R. Xavier Sigaud, 150, Rio de Janeiro, R.J. CEP 22290-180, BrazilSearch for more papers by this authorElson Longo, Elson Longo Universidade Federal de São Carlos, Departamento de Química, CP 676, São Carlos, CEP 13560-905, S.P., BrazilSearch for more papers by this authorCarlton A. Taft, Carlton A. Taft Universidade Federal de São Carlos, Departamento de Química, CP 676, São Carlos, CEP 13560-905, S.P., BrazilSearch for more papers by this author João B. L. Martins, Corresponding Author João B. L. Martins Centro Brasileiro de Pesquisas Físicas, Departamento de Matéria Condensada e Física Estatística, R. Xavier Sigaud, 150, Rio de Janeiro, R.J. CEP 22290-180, BrazilCentro Brasileiro de Pesquisas Físicas, Departamento de Matéria Condensada e Física Estatística, R. Xavier Sigaud, 150, Rio de Janeiro, R.J. CEP 22290-180, BrazilSearch for more papers by this authorElson Longo, Elson Longo Universidade Federal de São Carlos, Departamento de Química, CP 676, São Carlos, CEP 13560-905, S.P., BrazilSearch for more papers by this authorCarlton A. Taft, Carlton A. Taft Universidade Federal de São Carlos, Departamento de Química, CP 676, São Carlos, CEP 13560-905, S.P., BrazilSearch for more papers by this author First published: 07 December 1998 https://doi.org/10.1002/(SICI)1097-461X(1998)70:2 3.0.CO;2-9Citations: 16AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The ZnO surfaces have important catalytic activities. The H2/CO/CO2 mixture plays an important role in the synthesis of methanol. However, CO2 interaction is known to inhibit the CO interaction for methanol synthesis, protecting the surface against complete reduction or formate formation, but may also be used to promote the methanol synthesis on the Cu/ZnO catalyst. The NH3 adsorption is important to connect the surface acidic activity. The CO interaction is complex, and the NH3 interaction could help to understand the CO adsorption, since the Lewis basis NH3 is known to adsorb physically and chemically on the ZnO surfaces bonding nitrogen to the unsaturated zinc cation. The semi-empirical AM1 method, as well as the (ZnO)22 and (ZnO)60 large cluster models were used to study the interaction of CO2 and NH3 molecules with ZnO surfaces. The adsorbed molecules were fully optimized. We have found three different configurations for the CO2 interaction. The binding energy calculated for the CO2 adsorption is greater than the calculated value for the CO and NH3 interaction using the AM1 method. The CO bond length increases upon adsorption. The NH3 molecule adsorbs dissociatively on ZnO surfaces, forming the amide and hydroxyl species. The charge-transfer process, density of states, and self-consistent field orbital energies are also investigated. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 367–374, 1998 References 1 W. Göpel, G. Rocker, and R. Feierabend, Phys. Rev., B, 28 3247 (1983). 10.1103/PhysRevB.28.3427 CASWeb of Science®Google Scholar 2 A. Markovits, A. Fahmi, and C. Minot, Theochem, 371, 219 (1996). 10.1016/S0166-1280(96)04696-9 CASWeb of Science®Google Scholar 3 G. B. Raupp, and J. A. Dumesic, J. Phys. Chem., 89, 5240 (1985). 10.1021/j100270a024 CASWeb of Science®Google Scholar 4 J. A. Rodriguez, Langmuir 4, 1006 (1988). 10.1021/la00082a036 CASWeb of Science®Google Scholar 5 S. S. Fu, and G. A. Samorjai, J. Phys. Chem., 96, 4542 (1992). 10.1021/j100190a076 CASWeb of Science®Google Scholar 6 Z. X. Ren, J. Wang, L. J. Jia, and D. S. Lu, Appl. Catal., 49, 83 (1989). 10.1016/S0166-9834(00)81424-4 CASWeb of Science®Google Scholar 7 C. T. Au, W. Hirsch, and W. Hirschwald, Surf. Sci., 199, 507 (1988). 10.1016/0039-6028(88)90918-1 CASWeb of Science®Google Scholar 8 C. T. Au, W. Hirsch, and W. Hirschwald, Surf. Sci., 197, 391 (1988). 10.1016/0039-6028(88)90635-8 CASWeb of Science®Google Scholar 9 S. Matsushita, and T. Nakata, J. Chem. Phys., 36, 665 (1962). 10.1063/1.1732590 CASWeb of Science®Google Scholar 10 W. E. Garner, and F. J. Veal, J. Chem. Soc., 1487 (1935). Google Scholar 11 P. M. G. Hart, and F. Sebba, Trans. Faraday Soc., 56, 551 (1960). 10.1039/tf9605600551 CASWeb of Science®Google Scholar 12 T. Morimoto, H. Yanai, and M. Nagao, J. Phys. Chem., 80, 471 (1976). 10.1021/j100546a010 CASWeb of Science®Google Scholar 13 J. B. L. Martins, E. Longo, C. A. Taft, J. Andres, and J. G. R., Tostes, Theochem, 303, 19 (1994). 10.1016/0166-1280(94)80169-X CASGoogle Scholar 14 J. B. L. Martins, E. Longo, C. A. Taft, and J. Andres, Int. J. Quant. Chem., 57, 861 (1996). 10.1002/(SICI)1097-461X(1996)57:5 3.0.CO;2-W CASWeb of Science®Google Scholar 15 J. B. L. Martins, E. Longo, C. A. Taft, and J. Andres, Theochem, 363, 249 (1996). 10.1016/0166-1280(95)04443-4 CASWeb of Science®Google Scholar 16 J. B. L. Martins, E. Longo, C. A. Taft, and J. Andres, Theochem, 397, 147 (1997). 10.1016/S0166-1280(96)04943-3 Web of Science®Google Scholar 17 R. C. Baetzold, J. Phys. Chem., 89, 4150 (1985). 10.1021/j100265a045 CASWeb of Science®Google Scholar 18 A. B. Anderson, and J. A., Nichols, J. Am. Chem. Soc., 108, 1385 (1986). 10.1021/ja00267a004 CASWeb of Science®Google Scholar 19 A. B. Anderson, and J. A., Nichols, J. Am. Chem. Soc., 108, 4742 (1986). 10.1021/ja00276a010 CASWeb of Science®Google Scholar 20 N. U. Zhanpeisov, G. M. Zhidomirov, and M. Baerns, J. Struct. Chem., 35, 9 (1994). 10.1007/BF02578495 Web of Science®Google Scholar 21 J. A. Rodriguez, and C. T. Campbell, J. Phys. Chem., 91, 6648 (1987). 10.1021/j100311a019 CASWeb of Science®Google Scholar 22 J. A. Rodriguez, and C. T. Campbell, Surf. Sci., 197, 567 (1988). 10.1016/0039-6028(88)90647-4 CASWeb of Science®Google Scholar 23 J. B. L. Martins, E. Longo, C. A. Taft, and J. Andres, Theochem, 330, 347 (1995). 10.1016/0166-1280(94)03859-J CASWeb of Science®Google Scholar 24 J. B. L. Martins, E. Longo, C. A. Taft, and J. Andres, Theochem, 330, 301 (1995). 10.1016/0166-1280(94)03853-D CASWeb of Science®Google Scholar 25 J. B. L. Martins, E. Longo, C. A. Taft, and J. Andres, J. Mol. Struct., to appear. Google Scholar 26 R. Sekine, H. Adachi, and T. Morimoto, Surf. Sci., 208, 177 (1989). 10.1016/0039-6028(89)90043-5 CASWeb of Science®Google Scholar 27 J. Lin, P. M. Jones, M. D. Lowery, R. R. Gay, S. L. Cohen, and E. I. Solomon, Inorg. Chem., 31, 686 (1992). 10.1021/ic00030a030 CASWeb of Science®Google Scholar 28 M. Casarin, G. Favero, A. Glisenti, G. Granozzi, C. Maccato, G. Tabacchi, and A. Vittadini, J. Chem. Soc., Faraday Trans., 92, 3247 (1996). 10.1039/ft9969203247 CASWeb of Science®Google Scholar 29 W. J. Lai, Theochem, 257, 217 (1992). 10.1016/0166-1280(92)87192-3 Google Scholar 30 H. Nakatsuji, M. Yoshimoto, Y. Umemura, S. Takagi, and M. Hada, J. Phys. Chem., 100, 694 (1996). 10.1021/jp9504581 CASWeb of Science®Google Scholar 31 M. J. S. Dewar, and W. Thiel, J. Am. Chem. Soc., 99, 4899 (1977). 10.1021/ja00457a004 CASWeb of Science®Google Scholar 32 M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, J. Am. Chem. Soc., 107, 3902 (1985). 10.1021/ja00299a024 CASWeb of Science®Google Scholar 33 J. J. P. Stewart, J. Comp. Chem., 10, 209 (1989). 10.1002/jcc.540100208 CASWeb of Science®Google Scholar 34 M. C. Zerner, G. H. Loew, R. F. Kirchner, and U. T. M. Westerhoff, J. Am. Chem. Soc., 102, 589 (1980). 10.1021/ja00522a025 CASWeb of Science®Google Scholar 35 J. J. P. Stewart, Quant. Chem. Prog. Exch. Bull., 3, 43 (1983). Google Scholar 36 S. C. Abrahams, and J. L. Bernstein, Acta Crystallogr., B, 25, 1233 (1969). 10.1107/S0567740869003876 CASWeb of Science®Google Scholar 37 J. B. L. Martins, E. Longo, and J. Andres, Int. J. Quant. Chem., (Quant. Chem. Symp.), 27, 643 (1993). 10.1002/qua.560480858 CASGoogle Scholar 38 P. Notier, A. P. Borosy, and M. Allavena, J. Phys. Chem., B, 101, 1347 (1997). 10.1021/jp962263e Web of Science®Google Scholar 39 S. Briquez, C. Girardet, J. Goniakowski, and C. Noguera, J. Chem. Phys., 105, 678 (1996). 10.1063/1.471924 CASWeb of Science®Google Scholar 40 M. Sambi, G. Granozzi, G. A. Rizzi, M. Casarin, and E. Tondello, Surf. Sci., 319, 149 (1994). 10.1016/0039-6028(94)90577-0 CASWeb of Science®Google Scholar 41 W. Hotan, W. Gopel, and R. Haul, Surf. Sci., 83, 162 (1979). 10.1016/0039-6028(79)90486-2 CASWeb of Science®Google Scholar 42 W. Gopel, R. S. Bauer, and G. Hansson, Surf. Sci., 99, 138 (1980). 10.1016/0039-6028(80)90584-1 Web of Science®Google Scholar 43 E. H. Healy, and A. Holder, Theochem, 281, 141 (1993). 10.1016/0166-1280(93)87071-K Google Scholar 44 J. Saussey, J. C. Lavalley, and C. Bovet, J. Chem. Soc., Faraday Trans., I 78, 1457 (1982). 10.1039/f19827801457 CASWeb of Science®Google Scholar Citing Literature Volume70, Issue2Special Issue:The Ninth International Congress of Quantum Chemistry (Part II of II)1998Pages 367-374 ReferencesRelatedInformation

Referência(s)