Artigo Revisado por pares

Nickel‐Catalyzed Enantioselective Arylation of Pyridinium Ions: Harnessing an Iminium Ion Activation Mode

2013; Wiley; Volume: 125; Issue: 35 Linguagem: Inglês

10.1002/ange.201303994

ISSN

1521-3757

Autores

Stephen T. Chau, J. Patrick Lutz, Kevin Wu, Abigail G. Doyle,

Tópico(s)

Asymmetric Hydrogenation and Catalysis

Resumo

Angewandte ChemieVolume 125, Issue 35 p. 9323-9326 Zuschrift Nickel-Catalyzed Enantioselective Arylation of Pyridinium Ions: Harnessing an Iminium Ion Activation Mode† Stephen T. Chau, Stephen T. Chau Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544-1009 (USA) http://www.princeton.edu/∼doylegrp/Search for more papers by this authorJ. Patrick Lutz, J. Patrick Lutz Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544-1009 (USA) http://www.princeton.edu/∼doylegrp/Search for more papers by this authorKevin Wu, Kevin Wu Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544-1009 (USA) http://www.princeton.edu/∼doylegrp/Search for more papers by this authorProf. Abigail G. Doyle, Corresponding Author Prof. Abigail G. Doyle [email protected] Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544-1009 (USA) http://www.princeton.edu/∼doylegrp/Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544-1009 (USA) http://www.princeton.edu/∼doylegrp/Search for more papers by this author Stephen T. Chau, Stephen T. Chau Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544-1009 (USA) http://www.princeton.edu/∼doylegrp/Search for more papers by this authorJ. Patrick Lutz, J. Patrick Lutz Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544-1009 (USA) http://www.princeton.edu/∼doylegrp/Search for more papers by this authorKevin Wu, Kevin Wu Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544-1009 (USA) http://www.princeton.edu/∼doylegrp/Search for more papers by this authorProf. Abigail G. Doyle, Corresponding Author Prof. Abigail G. Doyle [email protected] Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544-1009 (USA) http://www.princeton.edu/∼doylegrp/Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544-1009 (USA) http://www.princeton.edu/∼doylegrp/Search for more papers by this author First published: 10 July 2013 https://doi.org/10.1002/ange.201303994Citations: 20 † We thank Phil Jeffrey for X-ray crystallographic structure determination of 2 b and 3. Financial support provided by Princeton University and Boehringer Ingelheim is gratefully acknowledged. A.G.D. is an Alfred P. Sloan Foundation Fellow, an Eli Lilly Grantee, an Amgen Young Investigator, and a Roche Early Excellence in Chemistry Awardee. Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Die enantioselektive Kreuzkupplung zwischen N-Acylpyridinium-Salzen und Organozinkreagentien nutzt ein Katalysatorsystem aus einer luftbeständigen Nickel(II)-Quelle und einem chiralen Phosphoramiditliganden für die Synthese von 2-substituierten 2,3-Dihydro-4-pyridonen mit bis >99 % ee. Supporting Information As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Filename Description ange_201303994_sm_miscellaneous_information.pdf8.4 MB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1For a review, see: Google Scholar 1aM. Beller, M. Eckert, Angew. Chem. 2000, 112, 1026–1044; 10.1002/(SICI)1521-3757(20000317)112:6 3.0.CO;2-D Google ScholarAngew. Chem. Int. Ed. 2000, 39, 1010–1027; for selected examples, see: 10.1002/(SICI)1521-3773(20000317)39:6 3.0.CO;2-P CASPubMedWeb of Science®Google Scholar 1bY. Lu, B. A. Arndtsen, Org. Lett. 2007, 9, 4395–4397; 10.1021/ol7021017 CASPubMedWeb of Science®Google Scholar 1cJ. L. Davis, R. Dhawan, B. A. Arndtsen, Angew. Chem. 2004, 116, 600–604; 10.1002/ange.200352123 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 590–594; 10.1002/anie.200352123 CASPubMedWeb of Science®Google Scholar 1dR. E. Beveridge, D. A. Black, B. A. Arndtsen, Eur. J. Org. Chem. 2010, 3650–3656; 10.1002/ejoc.201000231 CASWeb of Science®Google Scholar 1eD. M. Shacklady-McAtee, S. Dasgupta, M. P. Watson, Org. Lett. 2011, 13, 3490–3493; 10.1021/ol201248c CASPubMedWeb of Science®Google Scholar 1fP. Maity, H. D. Srinivas, M. P. Watson, J. Am. Chem. Soc. 2011, 133, 17142–17145; 10.1021/ja207585p CASPubMedWeb of Science®Google Scholar 1gH. Gong, R. Sinisi, M. R. Gagné, J. Am. Chem. Soc. 2007, 129, 1908–1909. 10.1021/ja068950t CASPubMedWeb of Science®Google Scholar 2T. J. A. Graham, J. D. Shields, A. G. Doyle, Chem. Sci. 2011, 2, 980–985. 10.1039/c1sc00026h CASWeb of Science®Google Scholar 3T. J. A. Graham, A. G. Doyle, Org. Lett. 2012, 14, 1616–1619. 10.1021/ol300364s CASPubMedWeb of Science®Google Scholar 4K. T. Sylvester, K. Wu, A. G. Doyle, J. Am. Chem. Soc. 2012, 134, 16967–16970. 10.1021/ja3079362 CASPubMedWeb of Science®Google Scholar 5For some recent examples of the use of 4-piperidones in the synthesis of biologically active 4-piperidines, see: Google Scholar 5aJ. N. Tawara, P. Lorenz, F. R. Stermitz, J. Nat. Prod. 1999, 62, 321–323; 10.1021/np9802769 CASPubMedWeb of Science®Google Scholar 5bP. S. Watson, B. Jiang, B. Scott, Org. Lett. 2000, 2, 3679–3681; 10.1021/ol006589o CASPubMedWeb of Science®Google Scholar 5cC. A. Brooks, D. L. Comins, Tetrahedron Lett. 2000, 41, 3551–3553. 10.1016/S0040-4039(00)00460-3 CASWeb of Science®Google Scholar 6For a recent review, see: J. A. Bull, J. J. Mousseau, G. Pelletier, A. B. Charette, Chem. Rev. 2012, 112, 2642–2713. 10.1021/cr200251d CASPubMedWeb of Science®Google Scholar 7 7aD. L. Comins, R. R. Goehring, S. P. Joseph, S. O'Connor, J. Org. Chem. 1990, 55, 2574–2576; 10.1021/jo00296a006 CASWeb of Science®Google Scholar 7bD. L. Comins, S. P. Joseph, R. R. Goehring, J. Am. Chem. Soc. 1994, 116, 4719–4728; 10.1021/ja00090a019 CASWeb of Science®Google Scholar 7cD. L. Comins, J. T. Kuethe, H. Hong, F. J. Lakner, T. E. Concolino, A. L. Rheingold, J. Am. Chem. Soc. 1999, 121, 2651–2652. 10.1021/ja990024+ CASWeb of Science®Google Scholar 8 8aC. Legault, A. B. Charette, J. Am. Chem. Soc. 2003, 125, 6360–6361; 10.1021/ja0348647 CASPubMedWeb of Science®Google Scholar 8bA. B. Charette, M. Grenon, A. Lemire, M. Pourashraf, J. Martel, J. Am. Chem. Soc. 2001, 123, 11829–11830; 10.1021/ja017136x CASPubMedWeb of Science®Google Scholar 8cG. Barbe, G. Pelletier, A. B. Charette, Org. Lett. 2009, 11, 3398–3401. 10.1021/ol901264f CASPubMedWeb of Science®Google Scholar 9 9aM. Á. Fernández-Ibáñez, B. Maciá, M. G. Pizzuti, A. J. Minnaard, B. L. Feringa, Angew. Chem. 2009, 121, 9503–9505; 10.1002/ange.200904981 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 9339–9341; 10.1002/anie.200904981 CASPubMedWeb of Science®Google Scholar 9bC. Nadeau, S. Aly, K. Belyk, J. Am. Chem. Soc. 2011, 133, 2878–2880; for the cross-coupling of pyridinium ions with copper acetylides generated in situ, see: 10.1021/ja111540g CASPubMedWeb of Science®Google Scholar 9cZ. Sun, S. Yu, Z. Ding, D. Ma, J. Am. Chem. Soc. 2007, 129, 9300–9301; 10.1021/ja0734849 CASPubMedWeb of Science®Google Scholar 9dD. A. Black, R. E. Beveridge, B. A. Arndtsen, J. Org. Chem. 2008, 73, 1906–1910. 10.1021/jo702293h CASPubMedWeb of Science®Google Scholar 10J. Pabel, C. E. Hösl, M. Maurus, M. Ege, K. T. Wanner, J. Org. Chem. 2000, 65, 9272–9275. 10.1021/jo0056489 CASPubMedWeb of Science®Google Scholar 11 11aP. Knochel, R. D. Singer, Chem. Rev. 1993, 93, 2117–2188; 10.1021/cr00022a008 CASWeb of Science®Google Scholar 11bE-i. Negishi, F. Liu in Metal-Catalyzed Cross-Coupling Reactions (Eds.: ), Wiley-VCH, Weinheim, 1998, pp. 1–47. 10.1002/9783527612222.ch1 Google Scholar 12For the synthesis of [{(methallyl)NiCl}2], see: Google Scholar 12aC. B. Shim, Y. H. Kim, B. Y. Lee, Y. Dong, H. Yun, Organometallics 2003, 22, 4272–4280; 10.1021/om0303303 CASWeb of Science®Google Scholar 12bC. R. Smith, A. Zhang, D. J. Mans, T. V. RajanBabu, Org. Synth. 2008, 85, 248–266. 10.15227/orgsyn.085.0248 CASPubMedGoogle Scholar 13PPh3 shares similar electronic properties to the phosphoramidite class of ligands; see: J. F. Teichert, B. L. Feringa, Angew. Chem. 2010, 122, 2538–2582; 10.1002/ange.200904948 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 2486–2528. 10.1002/anie.200904948 CASPubMedWeb of Science®Google Scholar 14For the preparation of organozinc reagents, see: A. E. Jensen, F. Kneisel, P. Knochel, Org. Synth. 2004, Coll. Vol. 10, 391. Google Scholar 15Alkyl zinc reagents also provided minimal enantioselectivity, owing to high rates of background reaction. Google Scholar 16For a Ni-catalyzed vinylation of enones that proceeds through NiII π-allyl intermediates resulting from oxidative addition to an activated electrophilic π system, see: Google Scholar 16aB. R. Grisso, J. R. Johnson, P. B. Mackenzie, J. Am. Chem. Soc. 1992, 114, 5160–5165; for the formation of η3-1-methoxyallyl PdII and PtII complexes, see: 10.1021/ja00039a030 CASWeb of Science®Google Scholar 16bM. Morita, K. Inoue, S. Ogoshi, H. Kurosawa, Organometallics 2003, 22, 5468–5472. 10.1021/om034122m CASWeb of Science®Google Scholar 17Whereas 4 may undergo η3 to η1 isomerization before reductive elimination, reductive elimination can occur directly from NiII π-allyl complexes supported by one PPh3 ligand; see: Google Scholar 17aH. Kurosawa, H. Ohnishi, M. Emoto, Y. Kawasaki, S. Murai, J. Am. Chem. Soc. 1988, 110, 6272–6273; 10.1021/ja00226a067 CASPubMedWeb of Science®Google Scholar 17bH. Kurosawa, H. Ohnishi, M. Emoto, N. Chatani, Y. Kawasaki, S. Murai, I. Ikeda, Organometallics 1990, 9, 3038–3042. 10.1021/om00162a014 CASWeb of Science®Google Scholar 18For a discussion of factors influencing the regioselectivity of nucleophilic addition to metal allyl complexes, see: G. Consiglio, R. M. Waymouth, Chem. Rev. 1989, 89, 257–276. 10.1021/cr00091a007 CASWeb of Science®Google Scholar Citing Literature Volume125, Issue35August 26, 2013Pages 9323-9326 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX