Photogeneration of Highly Amphiphilic TiO2 Surfaces
1998; Volume: 10; Issue: 2 Linguagem: Inglês
10.1002/(sici)1521-4095(199801)10
ISSN1521-4095
AutoresRong Wang, Kazuhito Hashimoto, Akira Fujishima, Makoto Chikuni, Eiichi Kojima, Atsushi Kitamura, Mitsuhide Shimohigoshi, Toshiya Watanabe,
Tópico(s)TiO2 Photocatalysis and Solar Cells
ResumoAdvanced MaterialsVolume 10, Issue 2 p. 135-138 Communication Photogeneration of Highly Amphiphilic TiO2 Surfaces Rong Wang, Rong WangSearch for more papers by this authorKazuhito Hashimoto, Kazuhito Hashimoto Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153 (Japan)Search for more papers by this authorAkira Fujishima, Akira Fujishima Department of Applied Chemistry, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113 (Japan)Search for more papers by this authorMakoto Chikuni, Makoto Chikuni Research & Development Center, TOTO Ltd., 2-8-1, Honson Chigasaki-shi, Kanagawa 253 (Japan)Search for more papers by this authorEiichi Kojima, Eiichi Kojima Research & Development Center, TOTO Ltd., 2-8-1, Honson Chigasaki-shi, Kanagawa 253 (Japan)Search for more papers by this authorAtsushi Kitamura, Atsushi Kitamura Research & Development Center, TOTO Ltd., 2-8-1, Honson Chigasaki-shi, Kanagawa 253 (Japan)Search for more papers by this authorMitsuhide Shimohigoshi, Mitsuhide Shimohigoshi Research & Development Center, TOTO Ltd., 2-8-1, Honson Chigasaki-shi, Kanagawa 253 (Japan)Search for more papers by this authorToshiya Watanabe, Toshiya Watanabe Research & Development Center, TOTO Ltd., 2-8-1, Honson Chigasaki-shi, Kanagawa 253 (Japan)Search for more papers by this author Rong Wang, Rong WangSearch for more papers by this authorKazuhito Hashimoto, Kazuhito Hashimoto Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153 (Japan)Search for more papers by this authorAkira Fujishima, Akira Fujishima Department of Applied Chemistry, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113 (Japan)Search for more papers by this authorMakoto Chikuni, Makoto Chikuni Research & Development Center, TOTO Ltd., 2-8-1, Honson Chigasaki-shi, Kanagawa 253 (Japan)Search for more papers by this authorEiichi Kojima, Eiichi Kojima Research & Development Center, TOTO Ltd., 2-8-1, Honson Chigasaki-shi, Kanagawa 253 (Japan)Search for more papers by this authorAtsushi Kitamura, Atsushi Kitamura Research & Development Center, TOTO Ltd., 2-8-1, Honson Chigasaki-shi, Kanagawa 253 (Japan)Search for more papers by this authorMitsuhide Shimohigoshi, Mitsuhide Shimohigoshi Research & Development Center, TOTO Ltd., 2-8-1, Honson Chigasaki-shi, Kanagawa 253 (Japan)Search for more papers by this authorToshiya Watanabe, Toshiya Watanabe Research & Development Center, TOTO Ltd., 2-8-1, Honson Chigasaki-shi, Kanagawa 253 (Japan)Search for more papers by this author First published: 26 January 1999 https://doi.org/10.1002/(SICI)1521-4095(199801)10:2 3.0.CO;2-MCitations: 708AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The photoconvertible surface wettability of TiO2 materials—UV illumination of these materials can generate surfaces that display a 0° contact angle for both water and oily liquids—is investigated. Frictional force, X-ray photoelectron, and Fourier transform infrared spectroscopies are used to supply information at a microscopic level. It is concluded that UV illumination is able to convert initially hydrophobic TiO2 surfaces into highly amphiphilic ones. This behavior is ascribed to photogenerated Ti3+ defect sites that favor dissociative water adsorption. References 1 A. Fujishima, K. Honda, Nature 1972, 238, 37. 10.1038/238037a0 CASPubMedWeb of Science®Google Scholar 2 K. C. Chang, A. Heller, B. Schwartz, S. Menezes, B. Miller, Science 1977, 196, 1097. 10.1126/science.196.4294.1097 CASPubMedWeb of Science®Google Scholar 3 B. J. Tufts, I. L. Abrahams, P. G. Santangelo, G. N. Ryba, L. G. Casagrande, N. S. Lewis, Nature 1987, 326, 861. 10.1038/326861a0 CASWeb of Science®Google Scholar 4 S. Licht, D. Peramunage, Nature 1990, 345, 330. 10.1038/345330a0 CASWeb of Science®Google Scholar 5 B. O'Regan, M. Grätzel, Nature 1991, 353, 737. 10.1038/353737a0 CASWeb of Science®Google Scholar 6 T. Kawai, T. Sakata, Nature 1980, 286, 474. 10.1038/286474a0 CASWeb of Science®Google Scholar 7 M. A. Fox, M. T. Dulay, Chem. Rev. 1993, 93, 341. 10.1021/cr00017a016 CASWeb of Science®Google Scholar 8 A. Heller, Acc. Chem. Res. 1995, 28, 503. 10.1021/ar00060a006 CASWeb of Science®Google Scholar 9 A. L. Linsebigler, G. Lu, J. T. Yates, Jr., Chem. Rev. 1995, 95, 735. 10.1021/cr00035a013 CASPubMedWeb of Science®Google Scholar 10 M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69. 10.1021/cr00033a004 CASWeb of Science®Google Scholar 11 K. Hashimoto, T. Kawai, T. Sakata, J. Phys. Chem. 1984, 88, 4083. 10.1021/j150662a046 CASWeb of Science®Google Scholar 12 A. Negishi, T. Iyoda, K. Hashimoto, A. Fujishima, Chem. Lett. 1995, 841. Google Scholar 13 R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 1997, 388, 431. 10.1038/41233 CASWeb of Science®Google Scholar 14 H. W. Fox, W. A. Zisman, J. Colloid Sci. 1950, 5, 514. 10.1016/0095-8522(50)90044-4 CASWeb of Science®Google Scholar 15 A. Carré, J. C. Gastel, M. E. R. Shanahan, Nature 1996, 379, 432. 10.1038/379432a0 CASWeb of Science®Google Scholar 16 T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Langmuir 1996, 12, 2125. 10.1021/la950418o CASWeb of Science®Google Scholar 17 J. L. Wilbur, H. A. Biebuyck, J. C. MacDonald, G. M. Whitesides, Langmuir 1995, 11, 825. 10.1021/la00003a025 CASWeb of Science®Google Scholar 18 J. G. Highfield, M. Grätzel, J. Phys. Chem. 1988, 92, 464. 10.1021/j100313a043 CASWeb of Science®Google Scholar 19 M. B. Hugenschmidt, L. Gamble, C. T. Campbell, Surf. Sci. 1994, 302, 329. 10.1016/0039-6028(94)90837-0 CASWeb of Science®Google Scholar 20 M. A. Henderson, Langmuir 1996, 12, 5093. 10.1021/la960360t CASWeb of Science®Google Scholar 21 M. A. Henderson, Surf. Sci. 1996, 355, 151. 10.1016/0039-6028(95)01357-1 CASWeb of Science®Google Scholar 22 M. Primet, P. Pichat, M. V. Mathieu, J. Phys. Chem. 1971, 75, 1216. 10.1021/j100679a007 CASWeb of Science®Google Scholar 23 J. Fan, J. T. Yates, Jr., J. Am. Chem. Soc. 1996, 118, 4686. 10.1021/ja952155q CASWeb of Science®Google Scholar 24 We found that after thorough cleaning of a contaminated surface, its water contact angle increased remarkably. Such a clean surface also showed high amphiphilicity when UV light was applied to it. This demonstrates that the initial TiO2 surface is hydrophobic and oleophilic, and that the surface wettablility conversion induced by UV illumination is independent of the photo-decomposition of surface contaminants. Google Scholar Citing Literature Volume10, Issue2January, 1998Pages 135-138 ReferencesRelatedInformation
Referência(s)