Role of gene regulation in song circuit development and song learning
1997; Wiley; Volume: 33; Issue: 5 Linguagem: Inglês
10.1002/(sici)1097-4695(19971105)33
ISSN1097-4695
Autores Tópico(s)Animal Vocal Communication and Behavior
ResumoJournal of NeurobiologyVolume 33, Issue 5 p. 549-571 Role of gene regulation in song circuit development and song learning David F. Clayton, Corresponding Author David F. Clayton Department of Cell and Structural Biology, Neuroscience Program and the Beckman Institute, B107 Chemical/Life Sciences Labs, University of Illinois, 601 S. Goodwin, Urbana, Illinois 61801Department of Cell and Structural Biology, Neuroscience Program and the Beckman Institute, B107 Chemical/Life Sciences Labs, University of Illinois, 601 S. Goodwin, Urbana, Illinois 61801Search for more papers by this author David F. Clayton, Corresponding Author David F. Clayton Department of Cell and Structural Biology, Neuroscience Program and the Beckman Institute, B107 Chemical/Life Sciences Labs, University of Illinois, 601 S. Goodwin, Urbana, Illinois 61801Department of Cell and Structural Biology, Neuroscience Program and the Beckman Institute, B107 Chemical/Life Sciences Labs, University of Illinois, 601 S. Goodwin, Urbana, Illinois 61801Search for more papers by this author First published: 07 December 1998 https://doi.org/10.1002/(SICI)1097-4695(19971105)33:5 3.0.CO;2-4Citations: 74AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The songbird has emerged as an important model for study of brain-behavior relationships by virtue of its rich natural advantages and from the pioneering efforts of explorers using anatomical and behavioral approaches. Now, molecular biology is providing a new and complementary paradigm for discerning songbird brain organization and function. Here, I review the work over the last 10 years that has laid the foundation for approaching songbird biology from the molecular perspective. As a result of this work, specific hypotheses can now be framed and tested regarding the mechanisms behind song circuit formation, behavioral plasticity, and the boundaries of adaptability. Age-related changes in more than 15 molecules have been observed in the song system of juvenile zebra finches, and these changes seem to define specific phases in circuit development. In adult songbirds, ordinary song-related activities such as singing and listening cause dramatic increases in gene expression in brain areas specific to each activity. The sensitivity of gene activation is modulated as a result of experience in adulthood and also changes during juvenile song learning. These studies have provided unexpected insights into the functional organization of the song circuit and the potential role of extrinsic modulatory systems in directing and limiting plastic change in the brain. With this rich base of knowledge, and techniques of gene manipulation on the horizon, answers to old questions seem within our reach: What sets the boundaries of neural plasticity? What limits learning? © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 549–571, 1997 References Aamodt, S. M., Kozlowski, M. R., Nordeen, E. J., and Nordeen, K. W. (1992). Distribution and developmental change in [3H] MK-801 binding within zebra finch song nuclei. J. Neurobiol. 23: 997–1005. 10.1002/neu.480230806 CASPubMedWeb of Science®Google Scholar Aamodt, S. M., Nordeen, E. J., and Nordeen, K. W. (1995). Early isolation from conspecific song does not affect the normal developmental decline of N-methyl-D-aspartate receptor binding in an avian song nucleus. J. Neurobiol. 27: 76–84. 10.1002/neu.480270108 CASPubMedWeb of Science®Google Scholar Alberini, C. M., Ghirardi, M., Metz, R., and Kandel, E. R. (1994). C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in Aplysia. Cell 76: 1099–1114. 10.1016/0092-8674(94)90386-7 CASPubMedWeb of Science®Google Scholar Alvarez-Buylla, A., Buskirk, D. R., and Nottebohm, F. (1987). Monoclonal antibody reveals radial glia in adult avian brain. J. Comp. Neurol. 264: 159–170. 10.1002/cne.902640203 PubMedWeb of Science®Google Scholar Arnold, A. P. (1975). The effects of castration on song development in zebra finches (Poephila guttata). J. Exp. Zool. 191: 261–278. 10.1002/jez.1401910212 CASPubMedWeb of Science®Google Scholar Arnold, A. P. (1980). Quantitative analysis of sex differences in hormone accumulation in the zebra finch brain: methodological and theoretical issues. J. Comp. Neurol. 189: 421–436. 10.1002/cne.901890302 CASPubMedWeb of Science®Google Scholar Arnold, A. P. (1997). Sexual differentiation of the zebra finch song system: positive evidence, negative evidence, null hypotheses, and a paradigm shift. J. Neurobiol. 33: 572–584. 10.1002/(SICI)1097-4695(19971105)33:5 3.0.CO;2-1 CASPubMedWeb of Science®Google Scholar Arnold, A. P. and Saltiel, A. (1979). Sexual difference in pattern of hormone accumulation in the brain of songbird. Science 205: 702–705. 10.1126/science.205.4407.702 CASPubMedWeb of Science®Google Scholar Ball, G. F. (1990). Chemical neuroanatomical studies of the steroid-sensitive songbird vocal system: a comparative approach. In: Comparative Physiology, Vol. 8: Hormone, Brain and Behavior in Vertebrates. 1. Sexual Differentiation, Neuroanatomical Aspects, Neurotransmitters and Neuropeptides. J. Balthazart, Ed. S. Karger, Basel, pp. 146–167. Google Scholar Balthazart, J. and Ball, G. F. (1995). Sexual differentiation of brain and behavior in birds. Trends Endocrinol. Metab. 6: 21–29. 10.1016/1043-2760(94)00098-O CASPubMedWeb of Science®Google Scholar Balthazart, J., Foidart, A., Wilson, E. M., and Ball, G. F. (1992). Immunocytochemical localization of an drogen receptors in the male songbird and quail brain. J. Comp. Neurol. 317: 407–420. 10.1002/cne.903170407 PubMedWeb of Science®Google Scholar Barclay, S. and Harding, C. (1988). Androstenedione modulation of monoamine levels and turnover in hypothalamic and vocal control nuclei in the male zebra finch: steroid effects on brain monoamines. Brain Res. 459: 333–343. 10.1016/0006-8993(88)90649-X CASPubMedWeb of Science®Google Scholar Barclay, S. and Harding, C. (1990). Differential modulation of monoamine levels and turnover rates by estrogen and/or androgen in hypothalamic vocal control nuclei of male zebra finches. Brain Res. 523: 251–262. 10.1016/0006-8993(90)91494-2 CASPubMedWeb of Science®Google Scholar Basham, M. E., Nordeen, E. J., Haber, S. N., and Nordeen, K. W. (1996). Developmental regulation of mRNA for the NMDAR1 subunit in zebra finches. Soc. Neurosci. Abstr. 22: 692. Google Scholar Baudier, J., Deloulme, J. C., Van Dorsselaer, A., Black, D., and Matthes, H. W. D. (1991). Purification and characterization of a brain-specific protein kinase C substrate, neurogranin (p17). J. Biol. Chem. 266: 229–237. CASPubMedWeb of Science®Google Scholar Beecher, M. D., Stoddard, P. K., Campbell, S. E., and Horning, C. L. (1996). Repertoire matching between neighbouring song sparrows. Anim. Behav. 51: 917–923. 10.1006/anbe.1996.0095 Web of Science®Google Scholar Böhner, J. (1990). Early acquisition of song in the zebra finch, Taeniopygia guttata. Anim. Behav. 39: 369–374. 10.1016/S0003-3472(05)80883-8 Web of Science®Google Scholar Bottjer, S. W. (1987). Ontogenetic changes in the pattern of androgen accumulation in song-control nuclei of male zebra finches. J. Neurobiol. 18: 125–139. 10.1002/neu.480180202 CASPubMedWeb of Science®Google Scholar Bottjer, S. W. (1992). The distribution of tyrosine hydroxylase immunoreactivity in the brains of male and female zebra finches. J. Neurobiol. 24: 51–69. 10.1002/neu.480240105 CASWeb of Science®Google Scholar Bottjer, S. W. and Alexander, G. (1995). Localization of met-enkephalin and vasoactive intestinal polypeptide in the brains of male zebra finches. Brain Behav. Evol. 45: 153–177. 10.1159/000113547 PubMedWeb of Science®Google Scholar Bottjer, S. W. and Johnson, F. (1997). Circuits, hormones, and learning: vocal behavior in songbirds. J. Neurobiol. 33: 602–618. 10.1002/(SICI)1097-4695(19971105)33:5 3.0.CO;2-8 CASPubMedWeb of Science®Google Scholar Bottjer, S. W., Miesner, E. A., and Arnold, A. P. (1984). Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224: 901–903. 10.1126/science.6719123 CASPubMedWeb of Science®Google Scholar Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., and Silva, A. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79: 59–68. 10.1016/0092-8674(94)90400-6 CASPubMedWeb of Science®Google Scholar Braun, K., Scheich, H., Heizmann, C. W., and Hun Ziker, W. (1991). Parvalbumin and calbindin-D28K immunoreactivity as developmental markers of auditory and vocal motor nuclei of the zebra finch. Neuroscience 40: 853–869. 10.1016/0306-4522(91)90017-I CASPubMedWeb of Science®Google Scholar Braun, K., Scheich, H., Schachner, M., and Heizmann, C. W. (1985). Distribution of parvalbumin, cytochrome oxidase activity and 14C-2-deoxyglucose uptake in the brain of the zebra finch. I. Auditory and vocal motor systems. Cell Tissue Res. 240: 101–115. 10.1007/BF00217563 CASWeb of Science®Google Scholar Brenowitz, E. (1991). Altered perception of species-specific song by female birds after lesions of a forebrain nucleus. Science 251: 303–305. 10.1126/science.1987645 CASPubMedWeb of Science®Google Scholar Brenowitz, E. (1997). Comparative approaches to the avian song system. J. Neurobiol. 33: 517–531. 10.1002/(SICI)1097-4695(19971105)33:5 3.0.CO;2-7 CASPubMedWeb of Science®Google Scholar Campagnoni, C. W., Kampf, K., Mason, B., Handley, V. W., and Campagnoni, A. T. (1994). Isolation and characterization of a cDNA encoding the zebra finch myelin proteolipid protein. Neurochem. Res. 19: 1061–1065. 10.1007/BF00968717 CASPubMedWeb of Science®Google Scholar Canady, R. A., Burd, G. D., Devoogd, T. J., and Nottebohm, F. (1988). Effect of testosterone on input received by an identified neuron type of the canary song system: a golgi/electron microscopy/degeneration study. J. Neurosci. 8: 3770–3784. CASPubMedWeb of Science®Google Scholar Casto, J. M. and Ball, G. F. (1994). Characterization and localization of d1 dopamine receptors in the sexually dimorphic vocal control nucleus, Area X, and the basal ganglia of european starlings. J. Neurobiol. 25: 767–780. 10.1002/neu.480250703 CASPubMedWeb of Science®Google Scholar Catchpole, C. K. (1982). The evolution of bird sounds in relation to mating and spacing behaviour. In: Acoustic Communication in Birds, Vol. 1. D. E. Kroodsma and E. H. Miller, Eds. Academic Press, New York, pp. 297–319. 10.1016/B978-0-08-092416-8.50018-8 Google Scholar Chew, S. J., Mello, C., Nottebohm, F., Jarvis, E., and Vicario, D. S. (1995). Decrements in auditory responses to a repeated conspecific song are long-lasting and require two periods of protein synthesis in the songbird forebrain. Proc. Natl. Acad. Sci. USA 92: 3406–3410. 10.1073/pnas.92.8.3406 CASPubMedWeb of Science®Google Scholar Chew, S. J., Vicario, D. S., and Nottebohm, F. (1996a). A large-capacity memory system that recognizes calls and songs of individual birds. Proc. Natl. Acad. Sci. USA 93: 1950–1955. 10.1073/pnas.93.5.1950 CASPubMedWeb of Science®Google Scholar Chew, S. J., Vicario, D. S., and Nottebohm, F. (1996b). Quantal duration of auditory memories. Science 274: 1909–1914. 10.1126/science.274.5294.1909 CASPubMedWeb of Science®Google Scholar Clayton, D. F., Huecas, M. E., Sinclair-Thompson, E. Y., Nastiuk, K. L., and Nottebohm, F. (1988). Probes for rare mRNAs reveal distributed cell subsets in canary brain. Neuron 1: 249–261. 10.1016/0896-6273(88)90146-8 CASPubMedWeb of Science®Google Scholar Clayton, D. F., Jin, H., Stripling, R., and George, J. (In press). Modulation of zenk gene expression during the critical period for zebra finch song learning. Soc. Neurosci. Abstr. 23. Google Scholar Cole, A. J., Saffen, D. W., Baraban, J. M., and Worgahr, Ley, P. F. (1989). Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340: 474–476. 10.1038/340474a0 CASPubMedWeb of Science®Google Scholar Collum, R. G., Clayton, D. F., and Alt, F. W. (1991). Structure and expression of canary myc family genes. Mol. Cell. Biol. 11: 1770–1776. 10.1128/MCB.11.3.1770 CASPubMedWeb of Science®Google Scholar Cox, C. L., Metherate, R., and Ashe, J. H. (1994) Modulation of cellular excitability in neocortex—muscarinic receptor and second messenger-mediated actions of acetylcholine. Synapse 16: 123–136. 10.1002/syn.890160206 CASPubMedWeb of Science®Google Scholar Davis, H. P., and Squire, L. R. (1984). Protein synthesis and memory: a review. Psychol. Bull. 96: 518–559. 10.1037/0033-2909.96.3.518 CASPubMedWeb of Science®Google Scholar Delecea, L., Delrio, J. A., and Soriano, E. (1995) Developmental expression of parvalbumin mrna in the cerebral cortex and hippocampus of the rat. Mol. Brain Res. 32: 1–13. 10.1016/0169-328X(95)00056-X CASWeb of Science®Google Scholar Denisenko, N., Nottebohm, F., and Mello, C. (1995). PCR-based mRNA differential display reveals enrichment of aldehyde dehydrogenase in the high vocal center and in two other nuclei of the song system of songbirds. Soc. Neurosci. Abstr. 21: 960. Google Scholar Denisenko, N., Nottebohm, F., and Mello, C. V. (1996). Retinoic acid in the brain of adult songbirds: a potential role for aldehyde dehydrogenase expression in the song system. Soc. Neurosci. Abstr. 22: 692. Google Scholar Di Chiara, G., Morelli, M., and Consolo, S. (1994). Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions. Trends Neurosci. 17: 228–233. 10.1016/0166-2236(94)90005-1 CASPubMedWeb of Science®Google Scholar Doupe, A. J. (1997). Song- and order-selective neurons in the songbird anterior forebrain and their emergence during vocal development. J. Neurosci. 17: 1147–1167. CASPubMedWeb of Science®Google Scholar Eales, L. A. (1985). Song learning in zebra finches: some effects of song model availability on what is learnt and when. Anim. Behav. 33: 1293–1300. 10.1016/S0003-3472(85)80189-5 Web of Science®Google Scholar Falls, J. B. (1982). Individual recognition by sounds in birds. In: Acoustic Communication in Birds, Vol. 2. D. E. Kroodsma, D. H. Miller, and H. Ouellet, Eds. Academic Press, New York, pp. 237–278. Google Scholar Fortune, E. and Margoliash, D. (1992). Cytoarchitectonic organization and morphology of cells of the Field L complex in male zebra finches (Taenopygia guttata). J. Comp. Neurol. 325: 388–404. 10.1002/cne.903250306 CASPubMedWeb of Science®Google Scholar Fortune, E. S. and Margoliash, D. (1995). Parallel pathways and convergence onto HVc and adjacent neostriatum of adult zebra finches (Taeniopygia guttata). J. Comp. Neurol. 360: 413–441. 10.1002/cne.903600305 CASPubMedWeb of Science®Google Scholar Foster, E. F. and Bottjer, S. W. (In press). Efferent projections of paraHVC in zebra finches. Soc. Neurosci. Abstr. Google Scholar Gahr, M., and Konishi, M. (1988). Developmental changes in estrogen-sensitive neurons in the forebrain of the zebra finch. Proc. Natl. Acad. Sci. USA 85: 7380–7383. 10.1073/pnas.85.19.7380 CASPubMedWeb of Science®Google Scholar Worgahr, M. and Kosar, E. (1996). Identification, distribution and developmental changes of a melatonin-binding site in the song control system of the zebra finch. J. Comp. Neurol. 367: 308–318. 10.1002/(SICI)1096-9861(19960401)367:2 3.0.CO;2-M CASPubMedWeb of Science®Google Scholar George, J. M. (1993). Analysis of novel genes whose RNAs are enriched in the HVC-associated telencephalon of songbirds. Doctoral dissertation, Rockefeller University. Google Scholar George, J. M. and Clayton, D. F. (1992). Differential regulation in the avian song control circuit of an mRNA predicting a highly conserved protein related to protein kinase C and the bcr oncogene. Mol. Brain Res. 12: 323–329. 10.1016/0169-328X(92)90134-W CASPubMedWeb of Science®Google Scholar George, J. M. and Clayton, D. F. (1996). The non-amyloid-β component of Alzheimer's disease plaque amyloid: comparative analysis suggests a normal function as a synaptic plasticizer. In: Neurodegenerative Disease: Proceedings of the 25th Washington International Spring Symposium. G. M. Fiskum, Ed. Plenum, New York, pp. 109–112. 10.1007/978-1-4899-0209-2_16 Web of Science®Google Scholar George, J. M., Jin, H., Woods, W. S., and Clayton, D. F. (1994). MAP kinase kinase (MEK-1) is enriched in radial cell processes in zebra finch brain. Soc. Neurosci. Abstr. 20: 1437. Google Scholar George, J. M., Jin, H., Woods, W. S., and Clayton, D. F. (1995). Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15: 361–372. 10.1016/0896-6273(95)90040-3 CASPubMedWeb of Science®Google Scholar Goelet, P., Castelucci, V., Schacher, S., and Kandel, E. (1986). The long and the short of long-term memory-a molecular framework. Nature 332: 419–422. 10.1038/322419a0 CASWeb of Science®Google Scholar Graybiel, A. M. (1995). Building action repertoires: memory and learning functions of the basal ganglia. Curr. Opin. Neurobiol. 5: 733–741. 10.1016/0959-4388(95)80100-6 CASPubMedWeb of Science®Google Scholar Griffin, M. G. and Taylor, G. T. (1995). Norepinephrine modulation of social memory-evidence for a time-dependent functional recovery of behavior. Behav. Neurosci. 109: 466–473. 10.1037/0735-7044.109.3.466 CASPubMedWeb of Science®Google Scholar Gurney, M. and Konishi, M. (1980). Hormone induced sexual differentiation of brain and behavior in zebra finches. Science 208: 1380–1382. 10.1126/science.208.4450.1380 CASPubMedWeb of Science®Google Scholar Hasselmo, M. E. and Barkai, E. (1995). Cholinergic modulation of activity-dependent synaptic plasticity in the piriform cortex and associative memory function in a network biophysical simulation. J. Neurosci. 15: 6592–6604. CASPubMedWeb of Science®Google Scholar Herrmann, K. and Arnold, A. P. (1991). The development of afferent projections to the robust archistriatal nucleus in male zebra finches: a quantitative electron microscopic study. J. Neurosci. 11: 2063–2074. CASPubMedWeb of Science®Google Scholar Herrmann, K. and Bischof, H.-J. (1986). Delayed development of song control nuclei in the zebra finch is related to behavioral development. J. Comp. Neurol. 245: 167–175. 10.1002/cne.902450204 CASPubMedWeb of Science®Google Scholar Holloway, C. C. and Clayton, D. F. (In press). Estrogen is required for song motor pathway development in female but not male zebra finch slices in vitro. Soc. Neurosci. Abstr. Google Scholar Immelmann, K. (1969). Song development in the zebra finch and other estrilid finches. In: Bird Vocalizations. R. A. Hinde, Ed. Cambridge University Press, Cambridge, U. K., pp. 61–74. Google Scholar Jacobs, E. C., Arnold, A. P., and Campagnoni, A. T. (1996). Zebra finch estrogen receptor cdna—cloning and mrna expression. J. Steroid Biochem. Mol. Biol. 59: 135–145. 10.1016/S0960-0760(96)00096-9 CASPubMedWeb of Science®Google Scholar Jarvis, E. D., Mello, C. V., and Nottebohm, F. (1995). Associative learning and stimulus novelty influence the song-induced expression of an immediate early gene in the canary forebrain. Learning Memory 2: 62–80. 10.1101/lm.2.2.62 CASPubMedWeb of Science®Google Scholar Jarvis, E. D. and Nottebohm, F. (1997). Motor-driven gene expression. Proc. Natl. Acad. Sci. USA 94: 4097–4102. 10.1073/pnas.94.8.4097 CASPubMedWeb of Science®Google Scholar Jarvis, E. D., Schwabl, H., Ribeiro, S., and Mello, C. V. (1997). Brain gene regulation by territorial singing behavior in freely-ranging songbirds. Neuroreport 8: 2073–2077. 10.1097/00001756-199705260-00052 PubMedWeb of Science®Google Scholar Jin, H. (1997). The role of gene regulation in neural circuit development: studies in the zebra finch. Doctoral dissertation, University of Illinois. Google Scholar Jin, H. and Clayton, D. F. Synelfin regulation during the critical period for song learning in normal and isolated juvenile zebra finches. Neurobiol. Learn. Mem. (in press). Google Scholar Jin, H., Simpson, H. B., Siepka, S., Mello, C., Huecas, M., Nastiuk, K. L., George, J. M., and Clayton, D. F. (1994). Developmental regulation of GAP43 mRNA in avian song control nuclei. Soc. Neurosci. Abstr. 20: 1436. Google Scholar Johnson, F. and Bottjer, S. W. (1993). Hormone-induced changes in identified cell populations of the higher vocal center in male canaries. J. Neurobiol. 24: 400–418. 10.1002/neu.480240311 CASPubMedWeb of Science®Google Scholar Johnson, F. and Bottjer, S. W. (1995). Differential estrogen accumulation among populations of projection neurons in the higher vocal center of male canaries. J. Neurobiol. 26: 87–108. 10.1002/neu.480260108 CASPubMedWeb of Science®Google Scholar Johnson, F., Sablan, M. M., and Bottjer, S. W. (1995). Topographic organization of a forebrain pathway involved with vocal learning in zebra finches. J. Comp. Neurol. 358: 260–278. 10.1002/cne.903580208 CASPubMedWeb of Science®Google Scholar Jones, A. E., Tencate, C., and Slater, P. J. B. (1996). Early experience and plasticity of song in adult male zebra finches (Taeniopygia guttata). J. Comp. Psychol. 110: 354–369. 10.1037/0735-7036.110.4.354 Web of Science®Google Scholar Jueptner, M., Frith, C. D., Brooks, D. J., Frackowiak, R. S. J., and Passingham, R. E. (1997). Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J. Neurophysiol. 77: 1325–1337. 10.1152/jn.1997.77.3.1325 CASPubMedWeb of Science®Google Scholar Kafitz, K. W., Herth, G., Bartsch, U., Guttinger, H. R., and Schachner, M. (1992). Application of testosterone accelerates oligodendrocyte maturation in brains of zebra finches. Neuroreport 3: 315–318. 10.1097/00001756-199204000-00006 CASPubMedWeb of Science®Google Scholar Kaplan, I. V., Guo, Y. H., and Mower, G. D. (1995). Developmental expression of the immediate early gene egr-1 mirrors the critical period in cat visual cortex. Dev. Brain Res. 90: 174–179. 10.1016/0165-3806(96)83498-5 CASPubMedWeb of Science®Google Scholar Kaplan, I. V., Guo, Y. H., and Mower, G. D. (1996). Immediate early gene expression in cat visual cortex during and after the critical period-differences between egr-1 and fos proteins. Mol. Brain Res. 36: 12–22. 10.1016/0169-328X(95)00228-K CASPubMedWeb of Science®Google Scholar Karten, H. and Dubbeldam, J. (1973). The organization and projections of the paleostriatal complex in the pigeon (Columba livia). J. Comp. Neurol. 140: 35–52. 10.1002/cne.901400103 CASPubMedWeb of Science®Google Scholar Kelley, D. and Nottebohm, F. (1979). Projections of a telencephalic auditory nucleus—field L—in the gene nary. J. Comp. Neurol. 183: 455–470. 10.1002/cne.901830302 CASPubMedWeb of Science®Google Scholar Kimpo, R. R. and Doupe, A. J. (1997). FOS is induced by singing in distinct neuronal populations in a motor network. Neuron 18: 315–325. 10.1016/S0896-6273(00)80271-8 CASPubMedWeb of Science®Google Scholar Klann, E., Chen, S.-J., and Sweatt, J. D. (1992). Increased phosphorylation of a 17–kDa protein kinase C substrate (p17) in long-term potentiation. J. Neurochem. 58: 1576–1579. 10.1111/j.1471-4159.1992.tb11382.x CASPubMedWeb of Science®Google Scholar Konishi, M. and Akutagawa, E. (1985). Neuronal growth, atrophy and death in a sexually dimorphic song nucleus in the zebra finch. Nature 315: 145–147. 10.1038/315145a0 CASPubMedWeb of Science®Google Scholar Konishi, M. and Akutagawa, E. (1988). A critical period for estrogen action on neurons of the song control system in the zebra finch. Proc. Natl. Acad. Sci. USA 85: 7006–7007. 10.1073/pnas.85.18.7006 CASPubMedWeb of Science®Google Scholar Kroodsma, D. E. and Byers, B. E. (1991). The function(s) of birdsong. Am. Zool. 31: 318–328. 10.1093/icb/31.2.318 Web of Science®Google Scholar Laurent, G. (1996). Dynamical representation of odors by oscillating and evolving neural assemblies. Trends Neurosci. 19: 489–496. 10.1016/S0166-2236(96)10054-0 CASPubMedWeb of Science®Google Scholar Liang, P. and Pardee, A. B. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967–971. 10.1126/science.1354393 CASPubMedWeb of Science®Google Scholar Malenka, R. C., Kauer, J. A., Perkel, D. J., Mauk, M. D., Kelly, P. T., Nicoll, R. A., and Waxham, M. N. (1989). An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature 340: 554–556. 10.1038/340554a0 CASPubMedWeb of Science®Google Scholar Malinow, R., Schulman, H., and Tsien, R. W. (1989). Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245: 862–866. 10.1126/science.2549638 CASPubMedWeb of Science®Google Scholar Marler, P. (1997). Three models of song learning: evidence from behavior. J. Neurobiol. 33: 501–516. 10.1002/(SICI)1097-4695(19971105)33:5 3.0.CO;2-8 CASPubMedWeb of Science®Google Scholar Marler, P. and Sherman, V. (1983). Song structure withoutauditory feedback: emendations of the auditory template hypothesis. J. Neurosci. 3: 517–531. 10.1523/JNEUROSCI.03-03-00517.1983 CASPubMedWeb of Science®Google Scholar McCasland, J. S. (1987). Neuronal control of birdsong production. J. Neurosci. 7: 23–39. 10.1523/JNEUROSCI.07-01-00023.1987 CASPubMedWeb of Science®Google Scholar McCasland, J. S. and Konishi, M. (1981). Interaction between auditory and motor activities in an avian song control nucleus. Proc. Natl. Acad. Sci. USA 78: 7815–7819. 10.1073/pnas.78.12.7815 CASPubMedWeb of Science®Google Scholar Mello, C. V. (1993). Analysis of immediate early gene expression in the songbird brain following song presentation. Doctoral dissertation, Rockefeller University, New York, NY. Google Scholar Mello, C. V. and Clayton, D. F. (1994). Song-induced Z ENK gene expression in auditory pathways of songbird brain and its relation to the song control system. J. Neurosci. 14: 6652–6666. 10.1523/JNEUROSCI.14-11-06652.1994 CASPubMedWeb of Science®Google Scholar Mello, C. V. and Clayton, D. F. (1995). Differential induction of the Z ENK gene within the avian forebrain and song control circuit after metrazole-induced depolarization. J. Neurobiol. 26: 145–161. 10.1002/neu.480260112 CASPubMedWeb of Science®Google Scholar Mello, C. V., Nottebohm, F., and Clayton, D. F. (1995). Repeated exposure to one song leads to a rapid and persistent decline in an immediate early gene's response to that song in zebra finch telencephalon. J. Neurosci. 15: 6919–6925. 10.1523/JNEUROSCI.15-10-06919.1995 CASPubMedWeb of Science®Google Scholar Mello, C. V., Vicario, D. S., and Clayton, D. F. (1992). Song presentation induces gene expression in the songbird forebrain. Proc. Natl. Acad. Sci. USA 89: 6818–6822. 10.1073/pnas.89.15.6818 CASPubMedWeb of Science®Google Scholar Metzger, M., Jiang, S., Wang, J. Z., and Braun, K. (1996). Organization of the dopaminergic innervation of forebrain areas relevant to learning—a combined immunohistochemical/retrograde tracing study in the domestic chick. J. Comp. Neurol. 376: 1–27. 10.1002/(SICI)1096-9861(19961202)376:1 3.0.CO;2-7 CASPubMedWeb of Science®Google Scholar Milbrandt, J. (1987). A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238: 797–799. 10.1126/science.3672127 CASPubMedWeb of Science®Google Scholar Mooney, R. and Konishi, M. (1991). Two distinct inputs to an avian song nucleus activate different glutamate receptor subtypes on individual neurons. Proc. Natl. Acad. Sci. USA 88: 4075–4079. 10.1073/pnas.88.10.4075 CASPubMedWeb of Science®Google Scholar Mooney, R. and Rao, M. (1994). Waiting periods versus early innervation: the development of axonal connections in the zebra finch song system. J. Neurosci. 14: 6532–6543. 10.1523/JNEUROSCI.14-11-06532.1994 CASPubMedWeb of Science®Google Scholar Morgan, J. I. and Curran, T. (1995). Immediate-early gene: ten years on. Trends Neurosci. 18: 66–67. CASPubMedWeb of Science®Google Scholar Morrison, R. and Nottebohm, F. (1993). Role of a telencephalicnucleus in the delayed song learning of socially isolated zebra finches. J. Neurobiol. 24: 1045–1064. 10.1002/neu.480240805 CASPubMedWeb of Science®Google Scholar Müller, S. C. and Scheich, H. P. (1985). Functional organization of the avian auditory field L—a comparative 2-deoxyglucose study. J. Comp. Physiol. 156: 1–12. 10.1007/BF00610661 Web of Science®Google Scholar Nastiuk, K. L. and Clayton, D. F. (1995). The canary androgen receptor mRNA is localized in the song control nuclei of the brain and is rapidly regulated by testosterone. J. Neurobiol. 26: 213–224. 10.1002/neu.480260206 CASPubMedWeb of Science®Google Scholar Nastiuk, K. L., Mello, C. V., George, J. M., and Clayton, D. F. (1994). Immediate-early gene responses in the avian song control system: cloning and expression analysis of the canary c-jun cDNA. Mol. Brain Res. 27: 299–309. 10.1016/0169-328X(94)90013-2 CASPubMedWeb of Science®Google Scholar Nixdorf-Bergweiler, B. E., Wallhausser-Franke, E., and Devoogd, T. J. (1995). Regressive development in neuronal structure during song learning in birds. J. Neurobiol. 27: 204–215. 10.1002/neu.480270207 CASPubMedWeb of Science®Google Scholar Nordeen, K. W. and Nordeen, E. J. (1992). Auditory feedback is necessary for the maintenance of stereotyped song in adult zebra finches. Behav. Neural Biol. 57: 58–66. 10.1016/0163-1047(92)90757-U CASPubMedWeb of Science®Google Scholar Nordeen, K. W. and Nordeen, E. J. (1993). Long-term maintenance of song in adult zebra finches is not affected by lesions of a forebrain region involved in song learning. Behav. Neural Biol. 59: 79–82. 10.1016/0163-1047(93)91215-9 CASPubMedWeb of Science®Google Scholar Nordeen, K. W. and Nordeen, E. J. (1997). Anatomical and synaptic substrates for avian song learning. J. Neurobiol. 33: 532–548. 10.1002/(SICI)1097-4695(19971105)33:5 3.0.CO;2-5 CASPubMedWeb of Science®Google Scholar Nordeen, K. W., Nordeen, E. J., and Arnold, A. P. (1986). Estrogen establishes sex differences in androgen accumulation in zebra finch brain. J. Neurosci. 6: 734–738. CASPubMedWeb of Science®Google Scholar Nordeen, K. W., Nordeen, E. J., and Arnold, A. P. (1987). Estrogen accumulation in zebra finch song control nuclei: implications for sexual differentiation and adult activation of song behavior. J. Neurobiol. 18: 569–582. 10.1002/neu.480180607 CASPubMedWeb of Science®Google Scholar Nottebohm, F., Stokes, T., and Leonard, C. M. (1976). Central control of song in the canary. J. Comp. Neurol. 165: 457–486. 10.1002/cne.901650405 PubMedWeb of Science®Google Scholar Pennartz, C. M. A. (1995). The ascending neuromodulatory systems in learning by reinforcement-comparing computational conjectures with experimental findings. Brain Res. Rev. 21: 219–245. 10.1016/0165-0173(95)00014-3 PubMedWeb of Science®Google Scholar Price, P. (1979). Developmental determinants of structure in zebra finch song. J. Comp. Physiol. Psychol. 93: 260–277. 10.1037/h0077553 Web of Science®Google Scholar Ryan, S., and Arnold, A. (1981). Evidence for cholinergic participation in the control of birdsong: acetylcholinesterase distribution and muscarinic receptor autoradiography in the zebra finch brain. J. Comp. Neurol. 202: 211–219. 10.1002/cne.902020207 CASPubMedWeb of Science®Google Scholar Sakaguchi, H. and Saito, N. (1989). The acetylcholine and catecholamine contents in song control nuclei of zebra finch during song ontogeny. Dev. Brain Res. 47: 313–317. 10.1016/0165-3806(89)90189-2 CASPubMedWeb of Science®Google Scholar Sakaguchi, H. and Saito, N. (1991). Developmental change of cholinergic activity in the forebrain of the zebra finch during song learning. Dev. Brain Res. 62: 223–228. 10.1016/0165-3806(91)90169-J CASPubMedWeb of Science®Google Scholar Sakaguchi, H. and Saito, N. (1996). Developmental changes in axon terminals visualized by immunofluorescence for the growth-associated protein, GAP-43, in the robust nucleus of the archistriatum of the zebra finch. Dev. Brain Res. 95: 245–251. 10.1016/0165-3806(96)00085-5 CASPubMedWeb of Science®Google Scholar Scharff, C. and Nottebohm, F. (1991). A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: implications for vocal learning. J. Neurosci. 11: 2896–2913. 10.1523/JNEUROSCI.11-09-02896.1991 CASPubMedWeb of Science®Google Scholar Schlinger, B. A. (1997). Sex steroids and their actions on the bird song system. J. Neurobiol. 33: 619–631. 10.1002/(SICI)1097-4695(19971105)33:5 3.0.CO;2-7 CASPubMedWeb of Science®Google Scholar Searcy, W. A. and Marler, P. (1987). Response of sparrows to songs of deaf and isolation-reared males: further evidence for innate auditory templates. Dev. Psychobiol. 20: 509–519. 10.1002/dev.420200505 CASPubMedWeb of Science®Google Scholar Sheng, M. and Greenberg, M. (1990). The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4: 477–485. 10.1016/0896-6273(90)90106-P CASPubMedWeb of Science®Google Scholar Siepka, S. and Clayton, D. F. (1995). Changes in neurofilament protein immunoreactivity during development of the song control circuit in zebra finches. Soc. Neurosci. Abstr. 21: 39. Google Scholar Siepka, S. M. (1997). Molecular analysis of neural structures during song learning in zebra finch. Doctoral dissertation, University of Illinois. Google Scholar Siepka, S. M., George, J. M., Jin, H., and Clayton, D. F. (1994). The HAT-14 mRNA is enriched in several avian song control nuclei and encodes an RC3/neurogranin-related protein. Soc. Neurosci. Abstr. 20: 1436. Google Scholar Siepka, S. M., Mittelmeier, T. M., and Clayton, D. F. (In press). Myelin basic protein emerges late in the development of the song motor pathway in the zebra finch. Soc. Neurosci. Abstr. Google Scholar Simpson, H. B. and Vicario, D. S. (1991a). Early estrogen treatment alone causes female zebra finches to produce learned, male-like vocalizations. J. Neurobiol. 22: 755–776. 10.1002/neu.480220710 CASPubMedWeb of Science®Google Scholar Simpson, H. B. and Vicario, D. S. (1991b). Early estrogen treatment of female zebra finches masculinizes the brain pathway for learned vocalizations. J. Neurobiol. 22: 777–793. 10.1002/neu.480220711 CASPubMedWeb of Science®Google Scholar Skene, J. H. P. (1989). Axonal growth-associated proteins. Ann. Rev. Neurosci. 12: 127–156. 10.1146/annurev.ne.12.030189.001015 CASPubMedWeb of Science®Google Scholar Slater, P. J. B., Richards, C., and Mann, N. I. (1991). Song learning in zebra finches exposed to a series of tutors during the sensitive phase. Ethology 88: 163–171. 10.1111/j.1439-0310.1991.tb00271.x Web of Science®Google Scholar Soha, J. A., Shimizu, T., and Doupe, A. J. (1996). Development of the catecholaminergic innervation of the song system of the male zebra finch. J. Neurobiol. 29: 473–489. 10.1002/(SICI)1097-4695(199604)29:4 3.0.CO;2-5 CASPubMedWeb of Science®Google Scholar Sohrabji, F., Nordeen, E. J., and Nordeen, K. W. (1990). Selective impairment of song learning following lesions of a forebrain nucleus in juvenile zebra finches. Behav. Neural Biol. 53: 51–63. 10.1016/0163-1047(90)90797-A CASPubMedWeb of Science®Google Scholar Sohrabji, F., Nordeen, K. W., and Nordeen, E. J. (1989). Projections of androgen-accumulating neurons in a nucleus controlling avian song. Brain Res. 488: 253–259. 10.1016/0006-8993(89)90715-4 CASPubMedWeb of Science®Google Scholar Stripling, R., Volman, S., and Clayton, D. (1997). Response modulation in the zebra finch caudal neostriatum: relationship to nuclear gene regulation. J. Neurosci. 17: 3883–3893. 10.1523/JNEUROSCI.17-10-03883.1997 CASPubMedWeb of Science®Google Scholar Sukhatme, V. P., Cao, X., Chang, L. C., Tsai-Morris, C. H., Stamenkovitch, D., Ferreira, P. C. P., Cohen, D. R., Edwards, S. A., Shows, T. B., Curran, T., Lebeau, M. M., and Adamson, E. D. (1988). A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 53: 37–43. 10.1016/0092-8674(88)90485-0 CASPubMedWeb of Science®Google Scholar Tole, S., Kaprielian, Z., Ou, S. K., and Patterson, P. H. (1995). Forse-1—a positionally regulated epitope in the developing rat central nervous system. J. Neurosci. 15: 957–969. 10.1523/JNEUROSCI.15-02-00957.1995 CASPubMedWeb of Science®Google Scholar Vates, G. E., Broome, B. M., Mello, C. V., and Nottebohm, F. (1996). Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches (Taenopygia guttata). J. Comp. Neurol. 366: 613–642. 10.1002/(SICI)1096-9861(19960318)366:4 3.0.CO;2-7 CASPubMedWeb of Science®Google Scholar Vicario, D. S. (1991). Organization of the zebra finch song control system: II. Functional organization of outputs from nucleus Robustus archistriatalis. J. Comp. Neurol. 309: 486–494. 10.1002/cne.903090405 CASPubMedWeb of Science®Google Scholar Volman, S. F. (1993). Development of neural selectivity for birdsong during vocal learning. J. Neurosci. 13: 4737–4747. CASPubMedWeb of Science®Google Scholar Wallace, C., Withers, G., Weiler, I., George, J., Clayton, D., and Greenough, W. (1995). Correspondence between sites of NGFI-A induction and sites morphological plasticity following exposure to environmental complexity. Mol. Brain Res. 32: 211–220. 10.1016/0169-328X(95)00076-5 CASPubMedWeb of Science®Google Scholar Wallhausser-Franke, E., Collins, C. E., and Devoogd, T. J. (1995a). Developmental changes in the distribution of NADPH-diaphorase-containing neurons in telencephalic nuclei of the zebra finch song system. J. Comp. Neurol. 356: 345–354. 10.1002/cne.903560303 CASPubMedWeb of Science®Google Scholar Wallhausser-Franke, E., Nixdorf-Bergweiler, B. E., and Devoogd, T. J. (1995b). Song isolation is associated with maintaining high spine frequencies on zebra finch iman neurons. Neurobiol. Learn. Mem. 64: 25–35. 10.1006/nlme.1995.1041 CASPubMedWeb of Science®Google Scholar Watson, J. B., Battenberg, E. F., Wong, K. K., Bloom, F. E., and Sutcliffe, J. G. (1990). Subtractive cDNA cloning of RC3, a rodent cortex-enriched mRNA encoding a novel 78 residue protein. J. Neurosci. Res. 26: 397–408. 10.1002/jnr.490260402 CASPubMedWeb of Science®Google Scholar Watson, J. T., Adkins-Regan, E., Whiting, P., Lindstrom, J. M., and Podleski, T. R. (1988). Autoradiographic localization of nicotinic acetylcholine receptors in the brain of the zebra finch (Poephila guttata). J. Comp. Neurol. 274: 255–264. 10.1002/cne.902740209 CASPubMedWeb of Science®Google Scholar Wiley, R., Tatchwell, B., and Davis, N. (1991). Recognition of individual males' songs by female dun-nocks: a mechanism increasing the number of copulatory partners and reproductive success. Ethology 88: 145–153. 10.1111/j.1439-0310.1991.tb00269.x Web of Science®Google Scholar Williams, H. (1985). Sexual dimorphism of auditory activity in the zebra finch song system. Behav. Neural Biol. 44: 470–484. 10.1016/S0163-1047(85)90904-5 CASPubMedWeb of Science®Google Scholar Williams, H. and McKibben, J. R. (1992). Changes in stereotyped central motor patterns controlling vocalization are induced by peripheral nerve injury. Behav. Neural Biol. 57: 67–78. 10.1016/0163-1047(92)90768-Y CASPubMedWeb of Science®Google Scholar Williams, H. and Nottebohm, F. (1985). Auditory responses in avian vocal motor neurons: a motor theory for song perception in birds. Science 229: 279–282. 10.1126/science.4012321 CASPubMedWeb of Science®Google Scholar Yin, J., Wallach, J., Del Vecchio, M., Wilder, E., Zhou, H., Quinn, W., and Tully, T. (1994). Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79: 49–58. 10.1016/0092-8674(94)90399-9 CASPubMedWeb of Science®Google Scholar Yu, A. C. and Margoliash, D. (1996). Temporal hierarchical control of singing in birds. Science 273: 1871–1875. 10.1126/science.273.5283.1871 CASPubMedWeb of Science®Google Scholar Citing Literature Volume33, Issue55 November 1997Pages 549-571 ReferencesRelatedInformation
Referência(s)