Outro Acesso aberto

Bibliography

2010; Wiley; Linguagem: Inglês

10.1002/9781118032428.biblio

ISSN

1940-6347

Autores

Julius S. Bendat, Allan G. Piersol,

Tópico(s)

Scientific Research and Discoveries

Resumo

Free Access Bibliography Julius S. Bendat, Julius S. BendatSearch for more papers by this authorAllan G. Piersol, Allan G. PiersolSearch for more papers by this author Book Author(s):Julius S. Bendat, Julius S. BendatSearch for more papers by this authorAllan G. Piersol, Allan G. PiersolSearch for more papers by this author First published: 21 January 2010 https://doi.org/10.1002/9781118032428.biblioBook Series:Wiley Series in Probability and Statistics AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinked InRedditWechat References Anon., “ Military Standard, Calibration System Requirements”, MIL-STD-45562A, Department of Defense, Washington, D.C., 1988. Google Scholar Bendat, J. S., Principles and Applications of Random Noise Theory, Wiley, New York, 1958. Reprinted by Krieger, Melbourne, Florida, 1977. Google Scholar Bendat, J. S., “ The Hilbert Transform and Applications to Correlation Measurements”, Bruel & Kjaer, Denmark, 1985. Google Scholar Bendat, J. S., “Spectral Techniques for Nonlinear System Analysis and Identification”, Shock and Vibration, Vol. 1, p. 21, 1993. CrossrefGoogle Scholar Bendat, J. S., Nonlinear System Techniques and Applications, Wiley-Interscience, New York, 1998. Web of Science®Google Scholar Bendat, J. S., and Palo, P. A., “ Practical Techniques for Nonlinear System Analysis and Identification”, Sound and Vibration, Bay Village, OH, June 1990. Google Scholar Bendat, J. S., Palo, P. A., and Coppolino, R. N., “A General Identification Technique for Nonlinear Differential Equations of motion”, Probabilistic Engineering Mechanics, Vol. 7, p. 43, 1992. CrossrefGoogle Scholar Bendat, J, S., Palo, P. A., and Coppolino, R. N., “Identification of Physical Parameters with Memory in Nonlinear Systems”, International Journal of Nonlinear Mechanics, Vol. 30, p. 841, 1995. CrossrefWeb of Science®Google Scholar Bendat, J. S., and Piersol, A. G., “Spectral Analysis of Nonlinear Systems Involving Square-Law Operations”, Journal of Sound and Vibration, Vol. 81, p. 199, 1982. CrossrefWeb of Science®Google Scholar Bendat, J. S., and Piersol, A. G., “Decomposition of Wave Forces into Linear and Nonlinear Components”, Journal of Sound and Vibration, Vol. 106, p. 391, 1986. CrossrefWeb of Science®Google Scholar Bendat, J. S., and Piersol, A. G., Engineering Applications of Correlation and Spectral Analysis, 2nd ed., Wiley-Interscience, New York, 1993. CrossrefWeb of Science®Google Scholar Blackman, R. B., and Tukey, J. W., The Measurement of Power Spectra, Dover, New York, 1958. Google Scholar Bracewell, R., The Fourier Transform and its Applications, McGraw-Hill, New York, 1965. Google Scholar Bracewell, R. N., The Hartley Transform, Oxford University Press, New York, 1986. Google Scholar Brigham, E. O., The Fast Fourier Transform and its Applications, Prentice-Hall, Englewood Cliffs, New Jersey, 1988. Google Scholar Camras, M., Magnetic Recording Handbook, Van Nostrand Reinhold, NY, 1988. Google Scholar Carter, G. G, Knapp, C. H., and Nuttall, A. H., “Estimation of the Magnitude- Squared Coherence via Overlapped Fast Fourier Transform Processing”, IEEE Transactions on Audio and Electroacoustics, Vol. AU-21, p. 337, August 1973. CrossrefWeb of Science®Google Scholar Chertoff, M. E., et al., “Characterizing Cochlear Mechano-Electric Transduction Using a Nonlinear Systems Identification Procedure”, Journal of the Acoustical Society of America, Vol. 100, p. 3741, 1996. CrossrefCASPubMedWeb of Science®Google Scholar Cohen, L., Time-Frequency Analysis, Prentice-Hall, Upper Saddle River, New Jersey, 1995. Google Scholar Cooley, J. W., and Tukey, J. W., “An Algorithm for the Machine Calculation of Complex Fourier Series”, Mathematics of Computations, Vol. 19, p 297, April 1965. Web of Science®Google Scholar Crandall, S. H., and Mark, W. D., Random Vibration in Mechanical Systems, Academic Press, New York, 1963. Google Scholar Cremer, L., Heckl, M., and Ungar, E. E., Structure-Borne Sound, Springer-Verlag, New York, 1973. CrossrefGoogle Scholar Davenport, W. B., Jr., and Root, W. L., Random Signals and Noise, McGraw-Hill, New York, 1958. Google Scholar Dodds, C. J., and Robson, J. D., “Partial Coherence in Multivariate Random Processes”, Journal of Sound and Vibration, Vol. 42, p. 243, 1975. CrossrefWeb of Science®Google Scholar Doebelin, E. O., Measurement Systems: Application and Design, 4th edition, McGraw-Hill, New York, 1990. Google Scholar Doebelin, E. O., Measurement Systems: Application and Design, 5th ed., McGraw-Hill, NY, 2004. Google Scholar Doob, J. L., Stochastic Processes, Wiley, New York, 1953. Web of Science®Google Scholar Dugundj, J., “Envelopes and Pre-Envelopes of Real Waveforms”, IRE Transactions on Information Theory, Vol. IT-4, p. 53, March 1958. CrossrefWeb of Science®Google Scholar Forlifer, W. R., “Effects of Filter Bandwidth in Spectrum Analysis of Random Vibration”, Shock and Vibration Bulletin, No. 33, Part 2, p. 273, 1964. Google Scholar Goodman, N. R., “ Measurement of Matrix Frequency Response Functions and Multiple Coherence Functions”, AFFDLTR 65–56, Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio, February 1965. Google Scholar Guttman, I., Wilks, S. S., and Hunter, J. S., Introductory Engineering Statistics, 3rd ed., Wiley, New York, 1982. Google Scholar Hamming, R. W., Digital Filters, 2nd ed., Prentice-Hall, Englewood Cliffs, New Jersey, 1983. Google Scholar Harris, F. J., “On the Use of Windows for Harmonic Analysis with Discrete Fourier Transform”, Proceedings of the IEEE, Vol. 66, p. 51, January 1978. CrossrefCASWeb of Science®Google Scholar Hartley, R. V. L., “A More Symmetrical Fourier Analysis Applied to Transmission Problems”, Proceedings of the IRE, Vol. 30, p. 144, March 1942. CrossrefGoogle Scholar Hauser, M. W., “Principles of Oversampling A/D Conversion”, Journal of Audio Engineering Society, Vol. 39, p. 3, January/February 1991. Web of Science®Google Scholar Himelblau, H., Piersol, A. G., Wise, J. H., and Grundvig, M. R., Handbook for Dynamic Data Acquisition and Analysis, IEST-RP-DTE012.1, Institute of Environmental Sciences and Technology, Mount Prospect, Illinois, 1994. Web of Science®Google Scholar Himelblau, H., and Piersol, A. G., Handbook for Dynamic Data Acquisition and Analysis, 2nd ed., IEST RD-DTE012.2, Institute of Environmental Sciences and Technology, Arlington Heights, IL, 2006. Google Scholar Hines, W. H., and Montgomery, D. C., Probability and Statistics in Engineering and Management Sciences, 3rd ed., Wiley, New York, 1990. Google Scholar Hnatek, E. R., A Users Handbook of D/A and A/D Converters, Wiley, NY, 1976. Web of Science®Google Scholar Huang, N. E., et al., “The Empirical Mode Decomposition and its Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis”, Proceedings, Royal Society A, Vol. 454, p. 903, 1998. CrossrefGoogle Scholar Jenkins, G. M., and Watts, D. G., Spectral Analysis and its Applications, Holden-Day, San Francisco, 1968. Google Scholar Kay, S. M., Modern Spectral Estimation: Theory and Application, Prentice-Hall, Englewood Cliffs, New Jersey, 1988. Google Scholar Kendall, M. G., and Stuart, A., The Advanced Theory of Statistics, Vol. 2, “ Inference and Relationships”, Hafner, New York, 1961. Google Scholar Laning, J. H., Jr., and Battin, R. H., Random Processes in Automatic Control, McGraw-Hill, New York, 1956. Google Scholar Liebeck, H., Algebra for Scientists and Engineers, Wiley, New York, 1969. Google Scholar Loeve, M. M., Probability Theory, 4th ed., Springer-Verlag, New York, 1977. Google Scholar Mark, W. D., and Fischer, R. W., “ Investigation of the Effects of Nonhomogeneous (or Nonstationary) Behavior on the Spectra of Atmospheric Turbulence”, NASA CR-2745, NASA Langley Research Center, Virginia, 1967. Google Scholar Marple, L. S., Digital Spectral Analysis with Applications, Prentice-Hall, Englewood Cliffs, New Jersey, 1987. Google Scholar Miller, K. S., Engineering Mathematics, Reinhart, New York, 1957. Google Scholar Mitra, S. K., and Kaiser, J. F., Handbook for Digital Signal Processing, Wiley, New York, 1993. Google Scholar Newland, D. E., Random Vibrations, Spectral & Wavelet Analysis, 3rd ed., Addisor Wesley Longman, Harlow, Essex, England, 1993. Google Scholar Nuttall, A. H., and Carter, G. C., “Spectral Estimation Using Combined Time and Lag Weighting”, Proceedings of the IEEE, Vol. 70, p. 1115, September 1982. CrossrefWeb of Science®Google Scholar Ochi, M. K., Applied Probability and Stochastic Processes, Wiley-Interscience, New York, 1990. Google Scholar Oppenheim, A. V, and Schafer, R. W., Discrete-Time Signal Processing, Prentice-Hall Englewood Cliffs, New Jersey, 1989. Google Scholar Oppenheim, A. V, Schafer, R. W., and Buck, J. R., Discrete-Time Signal Processing, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1998. Google Scholar Papoulis, A., Probability, Random Variables, and Stochastic Processes, 3rd ed., McGraw-Hill, 1991. Google Scholar Patel, J. K., and Read, C. B., Handbook of the Normal Distribution, Dekker, New York 1982. CrossrefGoogle Scholar Piersol, A. G., “Time Delay Estimation using Phase Data”, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-29, p. 471, June 1981. CrossrefWeb of Science®Google Scholar Piersol, A. G., “Optimum Resolution Bandwidth for Spectral Analysis of Stationary Random Vibration Data”, Shock and Vibration, Vol. 1, p. 33, 1993/1994. CrossrefGoogle Scholar Rice, S. O., “Statistical Properties of a Sine Wave plus Random Noise”, Bell System Technical Journal, Vol. 27, p. 109, January 1948. Wiley Online LibraryWeb of Science®Google Scholar Rice, S. O., “ Mathematical Analysis of Random Noise”, in Selected Papers on Noise and Stochastic Processes, ( N. Wax, ed.) Dover, New York, 1954. Google Scholar Rice, H. J., and Fitzpatrick, J. S., “A Generalized Technique for Spectral Analysis of Nonlinear Systems”, Mechanical Systems and Signal Processing, Vol. 2, p. 95, 1988. CrossrefWeb of Science®Google Scholar Ross, S. M., Introduction to Probability and Statistics for Engineers and Scientists, Wiley, New York, 1987. Google Scholar Rugh, W. J., Nonlinear System Theory: The Volterra/Wiener Approach, Johns Hopkins University Press, Baltimore, MD, 1981. Google Scholar Schaeffer, H. G., “ Finite Element Methods”, Chapter 28, Part II in Shock and Vibration Handbook, 4th ed. ( C. M. Harris, ed.), McGraw-Hill, New York, 1996. Google Scholar Schetzen, M., The Volterra and Wiener Theories of Nonlinear Systems, Wiley-Interscience, New York, 1980. Google Scholar Schmidt, H., “Resolution Bias Errors in Spectral Density, Frequency Response and Coherence Function Measurements”, Journal of Sound and Vibration, Vol. 101, No. 3, p. 347, 1985. CrossrefWeb of Science®Google Scholar Silverman, R. A., “Locally Stationary Random Processes”, Transactions of the IRE Information Theory, Vol. IT-3, p. 182, September 1957. CrossrefWeb of Science®Google Scholar Smallwood, D. O., “Using Singular Value Decomposition to Compute the Conditioned Cross-Spectral Density Matrix and Coherence Functions”, Proceedings of the 66th Shock and Vibration Symposium, Vol. 1, p. 109, November 1995. Google Scholar Stearns, S. D., and Rush, D. R., Digital Signal Analysis, 2nd ed., Prentice-Hall, Englewood Cliffs, New Jersey, 1990. Google Scholar Stokey, W. F., “ Vibrations of Systems Having Distributed Mass and Elasticity”, Chapter 7 in Shock and Vibration Handbook, 4th ed. ( C. M. Harris, ed.) McGraw-Hill, New York, 1996. Google Scholar Taylor, J. L., Computer-Based Data Acquisition Systems, 2nd ed., Instrument Society of America, Research Triangle Park, NC., 1990. Google Scholar Telemetry Group, Range Commander's Council, “ Telemetry Applications Handbook”, IRIG Document 119–88, White Sands, New Mexico, 1988. Google Scholar Telemetry Group, Range Commander's Council, “ Telemetry Standards”, IRIG Standard 106–93, White Sands, New Mexico, 1993. Google Scholar Teolis, A., Computational Signal Processing with Wavelets, Birkhauser, Boston, 1998. CrossrefGoogle Scholar Welch, P. D., “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms”, IEEE Transactions on Audio and Electroacoustics, Vol. AU-15, No. 2, June 1967. Web of Science®Google Scholar White, P. H., “Cross-Correlation in Structural Systems: Dispersive and Nondispersive Waves”, Journal of Acoustical Society of America, Vol. 45, p. 1118, May 1969. CrossrefWeb of Science®Google Scholar Winograd, S., “On Computing the Discrete Fourier Transform”, Mathematics of Computations, Vol. 32, p. 175, January 1978. Web of Science®Google Scholar Wirsching, P. H., Paez, T. L., and Ortiz, H., Random Vibrations: Theory and Practice, Wiley-Interscience, New York, 1995. Google Scholar Wright, C. F., Applied Measurement Engineering: How to Design Effective Mechanical Measurement Systems, Prentice-Hall, Englewood Cliffs, NJ, 1995. Google Scholar Yang, C. Y., Random Vibration of Structures, Wiley-Interscience, New York, 1986. Google Scholar Zayed, A. I., Advances in Shannon's Sampling Theory, CRC Press, Boca Raton, Florida, 1993. Google Scholar Random Data: Analysis and Measurement Procedures, Fourth Edition ReferencesRelatedInformation

Referência(s)