Specific Retention of Radiocesium in Volcanic Ash Soils Devoid of Micaceous Clay Minerals
2004; Wiley; Volume: 68; Issue: 1 Linguagem: Inglês
10.2136/sssaj2004.0313
ISSN1435-0661
AutoresEmmanuel Joussein, Nathalie Kruyts, D. Righi, Sabine Petit, Bruno Delvaux,
Tópico(s)Graphite, nuclear technology, radiation studies
ResumoSoil Science Society of America JournalVolume 68, Issue 1 p. 313-319 Division S-9—Soil Mineralogy Specific Retention of Radiocesium in Volcanic Ash Soils Devoid of Micaceous Clay Minerals Emmanuel Joussein, Corresponding Author Emmanuel Joussein [email protected] CNRS–UMR 6532 HydrASA, Faculté des Sciences, Université de Poitiers, 40, avenue du Recteur Pineau, 86022 Poitiers cedex, FranceCorresponding author ([email protected]). Search for more papers by this authorNathalie Kruyts, Nathalie Kruyts Université Catholique de Louvain, Unité des Sciences du Sol, 2/10, Place Croix du Sud, 1348 Louvain-la-Neuve, BelgiumSearch for more papers by this authorDominique Righi, Dominique Righi CNRS–UMR 6532 HydrASA, Faculté des Sciences, Université de Poitiers, 40, avenue du Recteur Pineau, 86022 Poitiers cedex, FranceSearch for more papers by this authorSabine Petit, Sabine Petit CNRS–UMR 6532 HydrASA, Faculté des Sciences, Université de Poitiers, 40, avenue du Recteur Pineau, 86022 Poitiers cedex, FranceSearch for more papers by this authorBruno Delvaux, Bruno Delvaux Université Catholique de Louvain, Unité des Sciences du Sol, 2/10, Place Croix du Sud, 1348 Louvain-la-Neuve, BelgiumSearch for more papers by this author Emmanuel Joussein, Corresponding Author Emmanuel Joussein [email protected] CNRS–UMR 6532 HydrASA, Faculté des Sciences, Université de Poitiers, 40, avenue du Recteur Pineau, 86022 Poitiers cedex, FranceCorresponding author ([email protected]). Search for more papers by this authorNathalie Kruyts, Nathalie Kruyts Université Catholique de Louvain, Unité des Sciences du Sol, 2/10, Place Croix du Sud, 1348 Louvain-la-Neuve, BelgiumSearch for more papers by this authorDominique Righi, Dominique Righi CNRS–UMR 6532 HydrASA, Faculté des Sciences, Université de Poitiers, 40, avenue du Recteur Pineau, 86022 Poitiers cedex, FranceSearch for more papers by this authorSabine Petit, Sabine Petit CNRS–UMR 6532 HydrASA, Faculté des Sciences, Université de Poitiers, 40, avenue du Recteur Pineau, 86022 Poitiers cedex, FranceSearch for more papers by this authorBruno Delvaux, Bruno Delvaux Université Catholique de Louvain, Unité des Sciences du Sol, 2/10, Place Croix du Sud, 1348 Louvain-la-Neuve, BelgiumSearch for more papers by this author First published: 01 January 2004 https://doi.org/10.2136/sssaj2004.3130Citations: 16Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The environmental availability of trace radiocesium (137Cs) was studied in soils devoid of weathered micas. The soils were developed from basaltic ash, within a sequence Udand → Tropept → Udalf → Udult from Cameroon. Tropepts and Udalfs are halloysite-rich and they exhibit a large cation exchange capacity (CEC) and a strong exchange selectivity for K probably due to the presence of halloysite-smectite mixed-layered clays. The 137Cs mobility was evaluated in the B horizons through (i) a physicochemical approach using the radiocesium interception potential concept (RIP) and a sequential sorption–desorption procedure, (ii) a biological test assessing the 137Cs rhizospheric mobilization (137Cs-RM). In a constant K+–Ca2+ background solution, one of the Tropepts and the Udalfs fixed about 76% of the initial 137Cs loading. The second desorption phase in acidic conditions was more discriminating: the Udalfs fixed about 40%, while the other soils fixed 5 to 20% of the initial 137Cs+ loading. The 137Cs-RM was generally small (3–15%) in all samples and was negatively correlated with the RIP (439–1836 μmol g−1). The specific retention of 137Cs in these soils was thus largely similar to that obtained in soils that contain weathered micas. It demonstrates the presence of 137Cs specific sites in halloysitic soils devoid of such minerals. These sites might be associated with halloysite-smectite mixed-layered clays. They were probably formed following wetting-drying cycles in soils heavily fertilized with K. References 1Avery, S.V. Fate of cesium in the environment: Distribution between the abiotic and biotic components of aquatic and terrestrial ecosystems. J. Environ. Radioact. 1996 30 139–171 https://doi.org/10.1016/0265-931X(96)89276-9 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996TT83500003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1016/0265-931X(96)89276-9 CASWeb of Science®Google Scholar 2Bailey, S.W. 1990. Halloysite—Critical assessment. p. 89–98. In V.C. Farmer, and Y. Tardy (ed.). Proc. 9th Int. Clay Conf. Strasbourg. 1989. Sci. Géol., Mémoire 86. vol. II, CGS-CNRS, Strasbourg. Google Scholar 3Brouwer, E. Cesium and rubidium ion equilibra in illite clay. J. Phys. Chem. 1983 87 1213–1219 https://doi.org/10.1021/j100230a024 10.1021/j100230a024 CASWeb of Science®Google Scholar 4Bruggenwert, M.G.M., and A. Kamphorst. 1976. Survey of experimental information on cation exchange in soils systems. p. 141. In G.H. Bolt (ed.) Soil chemistry: Physico-Chemical models, Elsevier, Amsterdam. Google Scholar 5Chorover, J. Structural charge and cesium retention in a chronosequence of tephritic soils. Soil Sci. Soc. Am. J. 1999 63 169–177 https://doi.org/10.2136/sssaj1999.03615995006300010024x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000079359600023&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.2136/sssaj1999.03615995006300010024x CASWeb of Science®Google Scholar 6Churchman, G.J. Intercalation method using formamide for differentiating halloysite from kaolinite. Clays Clay Miner. 1984 32 241–248 https://doi.org/10.1346/CCMN.1984.0320401 10.1346/CCMN.1984.0320401 CASWeb of Science®Google Scholar 7Cremers, A. Quantitative analysis of radiocesium retention in soils. Nature 1988 335 247–249 https://doi.org/10.1038/335247a0 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1988Q047700057&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1038/335247a0 CASWeb of Science®Google Scholar 8Cremers, A., A. Elsen, E. Valcke, J. Wauters, F. Sandalls, and S. Gaudern. 1990. The sensitivity of upland soils to radiocesium contamination. p. 238–248. In G. Desmet et al. (ed.) Transfer of radionuclides in natural and semi-natural environments. Elsevier Applied Science, London. Web of Science®Google Scholar 9Delvaux, B. Potassium exchange behaviour in a weathering sequence of volcanic ash soils. Soil Sci. Soc. Am. J. 1989 53 1679–1684 https://doi.org/10.2136/sssaj1989.03615995005300060011x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1989CE50600011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.2136/sssaj1989.03615995005300060011x CASWeb of Science®Google Scholar 10Delvaux, B. Surface properties and clay mineralogical of hydrated halloysitic soil clays. I: Existence of interlayer K+ specific sites. Clay Miner. 1990a 25 129–139 https://doi.org/10.1180/claymin.1990.025.2.01 10.1180/claymin.1990.025.2.01 CASWeb of Science®Google Scholar 11Delvaux, B. Surface properties and clay mineralogical of hydrated halloysitic soil clays. II: Evidence for the presence of halloysite/smectite (H/Sm) mixed-layer clays. Clay Miner. 1990b 25 141–160 https://doi.org/10.1180/claymin.1990.025.2.02 10.1180/claymin.1990.025.2.02 CASWeb of Science®Google Scholar 12Delvaux, B. Rhizospheric mobilization of radiocesium in soils. Environ. Sci. Technol. 2000 34 1489–1493 https://doi.org/10.1021/es990658g http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000086456100018&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1021/es990658g CASWeb of Science®Google Scholar 13Delvaux, B., N. Kruyts, E. Maes, and E. Smolders. 2001. Fate of radiocesium in soil and rhizosphere. p. 61–91. In G.R. Gobran et al. (ed.). Trace elements in the rhizosphere, CRC Press LLC, Boca Raton, FL. Web of Science®Google Scholar 14Delvaux, B. Morphology, texture, and microstructure of halloysitic soil clays as related to weathering and exchangeable cation. Clays Clay Miner. 1992 40 446–456 https://doi.org/10.1346/CCMN.1992.0400409 10.1346/CCMN.1992.0400409 CASWeb of Science®Google Scholar 15Dumort, J.C. 1968. Notice explicative sur la feuille Douala ouest. Carte géologique de reconnaissance au 1(500):000 (In French). BRGM, Direction des Mines et de la Géologie, Yaoundé, Cameroun, France. Google Scholar 16Evans, C.H. Reversible ion-exchange fixation of Cs137 leading to mobilisation from reservoir sediments. Geoch. Cosmochim. Acta 1983 47 1041–1049 https://doi.org/10.1016/0016-7037(83)90234-X 10.1016/0016-7037(83)90234-X CASWeb of Science®Google Scholar 17Fontaine, S. Potassium exchange behaviour in Carribean volcanic ash soils under banana cultivation. Plant Soil 1989 120 283–290 https://doi.org/10.1007/BF02377078 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1989CE37500016&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1007/BF02377078 CASWeb of Science®Google Scholar 18Mamy, J. Etude des facteurs influençant l'évolution structurale de la montmorillonite K et sa réversibilité (In French, with English abstract). Clay Miner. 1978 13 139–146 https://doi.org/10.1180/claymin.1978.013.2.02 Google Scholar 19Kruyts, N. Mobility of Radiocesium in three distinct forest floors. Sci. Total Environ. 2003 in press Google Scholar 20Kruyts, N. Respective horizon contributions to 137Cs soil-to-plant transfer: A rhizospheric experimental approach. J. Environ. Qual. 2000 29 1180–1185 https://doi.org/10.2134/jeq2000.00472425002900040020x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000089412600020&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.2134/jeq2000.00472425002900040020x Google Scholar 21Maes, A. Formation of highly selective cesium-exchange sites in montmorillonites. Clays Clay Miner. 1985 33 251–257 https://doi.org/10.1346/CCMN.1985.0330312 10.1346/CCMN.1985.0330312 CASWeb of Science®Google Scholar 22Maes, E. Fixation of radiocaesium traces in a weathering sequence mica → vermiculite → hydroxy interlayered vermiculite. Eur. J. Soil Sci. 1999 50 107–115 https://doi.org/10.1046/j.1365-2389.1999.00223.x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000081659200011&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1046/j.1365-2389.1999.00223.x CASWeb of Science®Google Scholar 23Ndayiragije, S., and B. Delvaux. 2003. Selective sorption of potassium in a weathering sequence Andosol-Nitisol from Guadeloupe. French West Indies. Catena., in press. Google Scholar 24Niebes, J.F. Release of nonexchangeable potassium from different size fractions of 2 highly K-fertilized soils in the rhizosphere of rape (Brassica-napus cv drakkar). Plant Soil 1993 156 403–406 https://doi.org/10.1007/BF00025068 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1993MV59100089&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Google Scholar 25Nimis, P.L. Radiocaesium in plants of forest ecosystems. Studia Geobotanica 1996 15 3–49 Google Scholar 26Okamura, Y. Ammonium-calcium exchange equilibria in soils and weathered pumices that differ in cation-exchange materials. J. Soil Sci. 1984 35 387–396 https://doi.org/10.1111/j.1365-2389.1984.tb00295.x 10.1111/j.1365-2389.1984.tb00295.x Google Scholar 27Sawhney, B.L. Selective sorption and fixation of cations by clay minerals: A review. Clays Clay Miner. 1972 20 93–100 https://doi.org/10.1346/CCMN.1972.0200208 10.1346/CCMN.1972.0200208 CASWeb of Science®Google Scholar 28Shoji, S. Mobilities and related factors of chemical elements in the topsoils of andosols in Tohuku, Japan. 2. Chemical and mineralogical compositions of size fractions and factors influencing the mobilities of major chemical elements. Soil Sci. 1981 132 330–346 https://doi.org/10.1097/00010694-198111000-00003 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1981MS22700003&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 Google Scholar 29Sieffermann, G. 1976. Les sols de quelques régions volcaniques du Cameroun: Variations pédologiques et minéralogiques du milieu équatorial au milieu tropical (In French). Mém. ORSTOM 66, Paris. Google Scholar 30Sweeck, L., J. Wauters, E. Valcke, and A. Cremers. 1990. The specific interception potential of soils for radiocaesium. p. 249–258. In G. Desmet et al. (ed.) Transfer of radionuclides in natural and semi-natural environments. Elsevier Applied Science, London. Web of Science®Google Scholar 31Takahashi, T. Potassium-selective, Halloysite-rich soils formed in volcanic materials from Northern California. Soil Sci. Soc. Am. J. 2001 65 516–526 https://doi.org/10.2136/sssaj2001.652516x http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=000169464300031&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.2136/sssaj2001.652516x Google Scholar 32Takahashi, T. Clay mineralogy and chemistry of soils formed in volcanic materials in the xeric moisture regime of northern California. Geoderma 1993 59 131–150 https://doi.org/10.1016/0016-7061(93)90066-T http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1993MT86400008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1016/0016-7061(93)90066-T CASWeb of Science®Google Scholar 33Vandenhove, H. Potassium bentonite addition to soil reduces radiocaesium availability to plants. Eu. J. Soil Sci. 2003 54 91–102 https://doi.org/10.1046/j.1365-2389.2003.00509.x 10.1046/j.1365-2389.2003.00509.x CASWeb of Science®Google Scholar 34Wauters, J. Prediction of solid/liquid distribution coefficients of radiocaesium in soils and sediments. Part one: A simplified procedure for the solid phase characterisation. Appl. Geochem. 1996 11 589–594 https://doi.org/10.1016/0883-2927(96)00027-3 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1996VJ67800008&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1016/0883-2927(96)00027-3 CASWeb of Science®Google Scholar 35Wauters, J. Availability of radiocaesium in soils: A new methodology. Sci. Total Environ. 1994 157 239–248 https://doi.org/10.1016/0048-9697(94)90585-1 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=agrocropsoil&KeyUT=A1994QA24500029&DestLinkType=FullRecord&DestApp=WOS_CPL&UsrCustomerID=523bbf5d2a868de7bbaeea0bc70ec0e4 10.1016/0048-9697(94)90585-1 CASWeb of Science®Google Scholar Citing Literature Volume68, Issue1January 2004Pages 313-319 ReferencesRelatedInformation
Referência(s)